Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hum Mol Genet ; 33(3): 211-223, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37819629

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive disabling X-linked recessive disorder that causes gradual and irreversible loss of muscle, resulting in early death. The corticosteroids prednisone/prednisolone and deflazacort are used to treat DMD as the standard of care; however, only deflazacort is FDA approved for DMD. The novel atypical corticosteroid vamorolone is being investigated for treatment of DMD. We compared the pharmaceutical properties as well as the efficacy and safety of the three corticosteroids across multiple doses in the B10-mdx DMD mouse model. Pharmacokinetic studies in the mouse and evaluation of p-glycoprotein (P-gP) efflux in a cellular system demonstrated that vamorolone is not a strong P-gp substrate resulting in measurable central nervous system (CNS) exposure in the mouse. In contrast, deflazacort and prednisolone are strong P-gp substrates. All three corticosteroids showed efficacy, but also side effects at efficacious doses. After dosing mdx mice for two weeks, all three corticosteroids induced changes in gene expression in the liver and the muscle, but prednisolone and vamorolone induced more changes in the brain than did deflazacort. Both prednisolone and vamorolone induced depression-like behavior. All three corticosteroids reduced endogenous corticosterone levels, increased glucose levels, and reduced osteocalcin levels. Using micro-computed tomography, femur bone density was decreased, reaching significance with prednisolone. The results of these studies indicate that efficacious doses of vamorolone, are associated with similar side effects as seen with other corticosteroids. Further, because vamorolone is not a strong P-gp substrate, vamorolone distributes into the CNS increasing the potential CNS side-effects.


Subject(s)
Muscular Dystrophy, Duchenne , Prednisolone , Pregnadienediols , Pregnenediones , Animals , Mice , Prednisolone/therapeutic use , X-Ray Microtomography , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Corticosterone/therapeutic use , Pharmaceutical Preparations
2.
Xenobiotica ; 52(2): 152-164, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34846990

ABSTRACT

Emvododstat was identified as a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of acute myeloid leukaemia and COVID-19. The objective of this paper is to evaluate the metabolism, pharmacokinetics, and drug interaction potentials of emvododstat.Emvododstat showed high binding to plasma protein with minimal distribution into blood cells in mouse, rat, dog, monkey, and human whole blood.O-Demethylation followed by glucuronidation appeared to be the major metabolic pathway in rat, dog, monkey, and human hepatocytes. CYP2C8, 2C19, 2D6, and 3A4 were involved in O-desmethyl emvododstat metabolite formation. Both emvododstat and O-desmethyl emvododstat inhibited CYP2D6 activity and induced CYP expression to different extents inĀ vitro.Emvododstat and O-desmethyl emvododstat inhibited BCRP transporter activity but did not inhibit bile salt transporters and other efflux or uptake transporters. Neither emvododstat nor O-desmethyl emvododstat was a substrate for common efflux or uptake transporters investigated.Emvododstat is bioavailable in mice, rats, dogs, and monkeys following a single oral dose. The absorption was generally slow with the mean plasma Tmax ranging from 2 to 5 h; plasma exposure of O-desmethyl emvododstat was lower in rodents, but relatively higher in dogs and monkeys.


Subject(s)
COVID-19 , Microsomes, Liver , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Carbamates , Carbazoles , Dihydroorotate Dehydrogenase , Dogs , Drug Interactions , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Membrane Transport Proteins/metabolism , Mice , Microsomes, Liver/metabolism , Neoplasm Proteins/metabolism , Rats
3.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26931466

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a Ć¢ĀˆĀ¼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Subject(s)
Isocoumarins/administration & dosage , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Piperazines/administration & dosage , Small Molecule Libraries/pharmacokinetics , Survival of Motor Neuron 2 Protein/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Central Nervous System/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Exons/genetics , Humans , Leukocytes, Mononuclear/drug effects , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/pathology , RNA Splicing/drug effects , RNA Splicing/genetics , Skin/metabolism , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/blood
4.
Nature ; 447(7140): 87-91, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17450125

ABSTRACT

Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.


Subject(s)
Codon, Nonsense/genetics , Genetic Diseases, Inborn/drug therapy , Genetic Diseases, Inborn/genetics , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Protein Biosynthesis/drug effects , Alleles , Animals , Biological Availability , Dystrophin/biosynthesis , Dystrophin/genetics , Genetic Diseases, Inborn/blood , Humans , Mice , Mice, Inbred mdx , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Phenotype , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substrate Specificity
5.
Front Oncol ; 12: 832816, 2022.
Article in English | MEDLINE | ID: mdl-35223511

ABSTRACT

Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.

6.
Nat Commun ; 12(1): 7299, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911927

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities. Investigational drugs aim to reduce HTT levels by repressing HTT transcription, stability or translation. These drugs require invasive procedures to reach the central nervous system (CNS) and do not achieve broad CNS distribution. Here, we describe the identification of orally bioavailable small molecules with broad distribution throughout the CNS, which lower HTT expression consistently throughout the CNS and periphery through selective modulation of pre-messenger RNA splicing. These compounds act by promoting the inclusion of a pseudoexon containing a premature termination codon (stop-codon psiExon), leading to HTT mRNA degradation and reduction of HTT levels.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , RNA Splicing , Small Molecule Libraries/administration & dosage , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Disease Models, Animal , Humans , Huntington Disease/metabolism , Mice , RNA Splicing/drug effects , RNA Stability/drug effects , Trinucleotide Repeat Expansion/drug effects
7.
Mol Cancer Ther ; 18(1): 3-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30352802

ABSTRACT

PTC299 was identified as an inhibitor of VEGFA mRNA translation in a phenotypic screen and evaluated in the clinic for treatment of solid tumors. To guide precision cancer treatment, we performed extensive biological characterization of the activity of PTC299 and demonstrated that inhibition of VEGF production and cell proliferation by PTC299 is linked to a decrease in uridine nucleotides by targeting dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for de novo pyrimidine nucleotide synthesis. Unlike previously reported DHODH inhibitors that were identified using in vitro enzyme assays, PTC299 is a more potent inhibitor of DHODH in isolated mitochondria suggesting that mitochondrial membrane lipid engagement in the DHODH conformation in situ is required for its optimal activity. PTC299 has broad and potent activity against hematologic cancer cells in preclinical models, reflecting a reduced pyrimidine nucleotide salvage pathway in leukemia cells. Archived serum samples from patients treated with PTC299 demonstrated increased levels of dihydroorotate, the substrate of DHODH, indicating target engagement in patients. PTC299 has advantages over previously reported DHODH inhibitors, including greater potency, good oral bioavailability, and lack of off-target kinase inhibition and myelosuppression, and thus may be useful for the targeted treatment of hematologic malignancies.


Subject(s)
Hematologic Neoplasms/drug therapy , Imidazoles/administration & dosage , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Thiazoles/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dihydroorotate Dehydrogenase , Hematologic Neoplasms/blood , Hematologic Neoplasms/enzymology , Humans , Imidazoles/pharmacology , K562 Cells , Mice , Oxidoreductases Acting on CH-CH Group Donors/blood , Thiazoles/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL