Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
JAMA ; 331(21): 1814-1823, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38722621

ABSTRACT

Importance: In newly diagnosed Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL), disease progression due to acquired resistance to first- or second-generation BCR::ABL1 tyrosine kinase inhibitors is common. Ponatinib inhibits BCR::ABL1 and all single-mutation variants, including T315I. Objective: To compare frontline ponatinib vs imatinib in adults with newly diagnosed Ph+ ALL. Design, Setting, and Participants: Global registrational, phase 3, open-label trial in adults aged 18 years or older with newly diagnosed Ph+ ALL. From January 2019 to May 2022, eligible patients at 77 sites were randomized 2:1 to ponatinib (30 mg/d) or imatinib (600 mg/d) with reduced-intensity chemotherapy, followed by single-agent ponatinib or imatinib after the cycle 20 phase of the trial. The last date of follow-up for this analysis was August 12, 2022. Intervention: Patients received ponatinib, 30 mg/d, or imatinib, 600 mg/d, with reduced-intensity chemotherapy, followed by single-agent ponatinib or imatinib after cycle 20. The ponatinib dose was reduced to 15 mg on achievement of minimal residual disease-(MRD) negative complete remission. Main Outcomes and Measures: The primary end point of this interim analysis was MRD-negative complete remission (≤0.01% BCR::ABL1 [MR4] centrally assessed by reverse transcriptase-quantitative polymerase chain reaction), with complete remission maintained for at least 4 weeks at the end of cycle 3. The key secondary end point was event-free survival. Results: Of 245 patients randomized (median age, 54 years; 133 [54.3%] female), 232 (ponatinib, n = 154; imatinib, n = 78) who had p190 or p210 dominant isoforms verified by the central laboratory were analyzed for the primary end point. The MRD-negative complete remission rate (primary end point) was significantly higher with ponatinib (34.4% [53/154]) vs imatinib (16.7% [13/78]) (risk difference, 0.18 [95% CI, 0.06-0.29]; P = .002). At the data cutoff, event-free survival had not met the prespecified number of events. Median event-free survival was not reached in the ponatinib group and was 29 months in the imatinib group. The most common adverse events were similar between treatment groups. Arterial occlusive events were infrequent and comparable between groups (ponatinib, 2.5%; imatinib, 1.2%). Conclusions and Relevance: Ponatinib demonstrated a superior rate of MRD-negative complete remission at the end of induction vs imatinib when combined with reduced-intensity chemotherapy in adults with newly diagnosed Ph+ ALL. The safety profile of ponatinib was comparable with imatinib. Trial Registration: ClinicalTrials.gov Identifier: NCT03589326.


Subject(s)
Antineoplastic Agents , Imatinib Mesylate , Imidazoles , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Pyridazines , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Fusion Proteins, bcr-abl/genetics , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/adverse effects , Imidazoles/therapeutic use , Imidazoles/adverse effects , Imidazoles/administration & dosage , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Progression-Free Survival , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Pyridazines/therapeutic use , Pyridazines/adverse effects , Remission Induction , Adolescent
2.
Br J Cancer ; 124(2): 383-390, 2021 01.
Article in English | MEDLINE | ID: mdl-33012782

ABSTRACT

BACKGROUND: EGFR tyrosine kinase inhibitors (TKIs) induce cytolysis and release of tumour proteins, which can stimulate antigen-specific T cells. The safety and efficacy of durvalumab and gefitinib in combination for TKI-naive patients with advanced EGFRm NSCLC was evaluated. METHODS: This Phase 1 open-label, multicentre trial (NCT02088112) was conducted in 56 patients with NSCLC. Dose expansion permitted TKI-naive patients, primarily with activating L858R or Ex19del EGFRm. Arms 1 + 1a received concurrent therapy; Arm 2 received 4 weeks of gefitinib induction followed by concurrent therapy. RESULTS: From dose escalation, the recommended dose of durvalumab was 10 mg/kg Q2W with 250 mg QD gefitinib. Pharmacokinetics were as expected, consistent with inhibition of soluble PD-L1 and no treatment-emergent immunogenicity. In dose expansion, 35% of patients had elevated liver enzymes leading to drug discontinuation. In Arms 1 + 1a, objective response rate was 63.3% (95% CI: 43.9-80.1), median progression-free survival (PFS) was 10.1 months (95% CI: 5.5-15.2) and median response duration was 9.2 months (95% CI: 3.7-14.0). CONCLUSIONS: Durvalumab and gefitinib in combination had higher toxicity than either agent alone. No significant increase in PFS was detected compared with historical controls. Therefore, concurrent PD-L1 inhibitors with gefitinib should be generally avoided in TKI-naive patients with EGFRm NSCLC.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Gefitinib/administration & dosage , Lung Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/adverse effects , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Female , Gefitinib/adverse effects , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Progression-Free Survival
3.
J Med Chem ; 64(21): 16213-16241, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34714078

ABSTRACT

Identification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation.


Subject(s)
Imidazoles/chemistry , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyridines/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Humans , Protein Binding , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
4.
Clin Cancer Res ; 13(5): 1576-83, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17332304

ABSTRACT

PURPOSE: The Ras-Raf-mitogen-activated protein kinase kinase (MEK) pathway is overactive in many human cancers and is thus a target for novel therapeutics. We have developed a highly potent and selective inhibitor of MEK1/2. The purpose of these studies has been to show the biological efficacy of ARRY-142886 (AZD6244) in enzymatic, cellular, and animal models. EXPERIMENTAL DESIGN: The ability of ARRY-142886 to inhibit purified MEK1 as well as other kinases was evaluated. Its effects on extracellular signal-regulated kinase (ERK) phosphorylation and proliferation in several cell lines were also determined. Finally, the inhibitor was tested in HT-29 (colorectal) and BxPC3 (pancreatic) xenograft tumor models. RESULTS: The IC(50) of ARRY-142886 was determined to be 14 nmol/L against purified MEK1. This activity is not competitive with ATP, which is consistent with the high specificity of compound for MEK1/2. Basal and epidermal growth factor-induced ERK1/2 phosphorylation was inhibited in several cell lines as well as 12-O-tetradecanoylphorbol-13-acetate-induced ERK1/2 phosphorylation in isolated peripheral blood mononuclear cells. Treatment with ARRY-142886 resulted in the growth inhibition of several cell lines containing B-Raf and Ras mutations but had no effect on a normal fibroblast cell line. When dosed orally, ARRY-142886 was capable of inhibiting both ERK1/2 phosphorylation and growth of HT-29 xenograft tumors in nude mice. Tumor regressions were also seen in a BxPC3 xenograft model. In addition, tumors remained responsive to growth inhibition after a 7-day dosing holiday. CONCLUSIONS: ARRY-142886 is a potent and selective MEK1/2 inhibitor that is highly active in both in vitro and in vivo tumor models. This compound is currently being investigated in clinical studies.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , MAP Kinase Kinase 1/drug effects , MAP Kinase Kinase 2/drug effects , Animals , Blotting, Western , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Mice , Mitogen-Activated Protein Kinase 3/drug effects , Phosphorylation/drug effects , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 23(4): 1025-1035, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28073847

ABSTRACT

Purpose: AZD5153 is a novel BRD4/BET inhibitor with a distinctive bivalent bromodomain binding mode. To support its clinical development, we identified pharmacodynamic (PD) biomarkers for use in clinical trials to establish target engagement.Experimental Design: CCR2 and CD180 mRNAs, initially identified from whole transcriptome profiling, were further evaluated by quantitative PCR in hematologic cell lines, xenografts, and whole blood from rat, healthy volunteers, and patients with cancer. MYC and HEXIM1 mRNAs were also evaluated.Results: RNA-sequencing data showed consistent decreases in CCR2/CD180 expression across multiple hematologic cell lines upon AZD5153 treatment. Evaluation of dose dependence in MV4,11 cells confirmed activity at clinically relevant concentrations. In vivo downregulation of CCR2/CD180 mRNAs (>80%) was demonstrated in MV4,11 and KMS-11 xenograft tumors at efficacious AZD5153 doses. Consistent with in vitro rat blood data, an in vivo rat study confirmed greater inhibition of CCR2/CD180 mRNA in whole blood versus MYC at an efficacious dose. Finally, in vitro treatment of whole blood from healthy volunteers and patients with cancer demonstrated, in contrast to MYC, almost complete downregulation of CCR2/CD180 at predicted clinically achievable concentrations.Conclusions: Our data strongly support the use of CCR2 and CD180 mRNAs as whole blood PD biomarkers for BRD4 inhibitors, especially in situations where paired tumor biopsies are unavailable. In addition, they can be used as tumor-based PD biomarkers for hematologic tumors. MYC mRNA is useful as a hematologic tumor-based biomarker but suboptimal as a whole blood biomarker. Utility of HEXIM1 mRNA may be limited to higher concentrations. Clin Cancer Res; 23(4); 1025-35. ©2017 AACR.


Subject(s)
Antigens, CD/blood , Hematologic Neoplasms/drug therapy , Nuclear Proteins/genetics , Receptors, CCR2/blood , Transcription Factors/genetics , Animals , Biomarkers, Tumor/blood , Cell Cycle Proteins , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/blood , Hematologic Neoplasms/pathology , Heterocyclic Compounds, 2-Ring/administration & dosage , Heterocyclic Compounds, 2-Ring/blood , Humans , Mice , Nuclear Proteins/antagonists & inhibitors , Piperazines/administration & dosage , Piperazines/blood , Proto-Oncogene Proteins c-myc/blood , Pyrazoles , Pyridazines , Rats , Transcription Factors/antagonists & inhibitors , Xenograft Model Antitumor Assays
6.
J Med Chem ; 49(2): 441-4, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16420026

ABSTRACT

The role of MEK 1,2 in cancer tumorgenesis has been clearly demonstrated preclinically, and two selective inhibitors are currently undergoing clinical evaluation to determine their role in the human disease. We have discovered 4-(4-bromo-2-fluorophenylamino)-1-methylpyridin-2(1H)-ones as a new class of ATP noncompetitive MEK inhibitors. These inhibitors exhibit excellent cellular potency and good pharmacokinetic properties and have demonstrated the ability to inhibit ERK phosphorylation in HT-29 tumors from mouse xenograft studies.


Subject(s)
Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Pyridines/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , Drug Stability , Hepatocytes/metabolism , Humans , In Vitro Techniques , Mice , Phosphorylation , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 15(11): 2563-2574, 2016 11.
Article in English | MEDLINE | ID: mdl-27573426

ABSTRACT

The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563-74. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Hematologic Neoplasms/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomarkers , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Mice , Molecular Targeted Therapy , Nuclear Proteins/chemistry , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/chemistry , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
8.
Oncogene ; 22(32): 4953-63, 2003 Aug 07.
Article in English | MEDLINE | ID: mdl-12902978

ABSTRACT

We demonstrate that PS-341, a small molecule inhibitor of the proteasome, markedly sensitizes resistant prostate, colon, and bladder cancer cells to TNF-like apoptosis-inducing ligand (TRAIL)-induced apoptosis irrespective of Bcl-xL overexpression. PS-341 treatment by itself does not affect the levels of Bax, Bak, caspases 3 and 8, c-Flip or FADD, but elevates levels of TRAIL receptors DR4 and DR5. This increase in receptor protein levels is associated with the ubiquitination of the DR5 protein. When PS-341 is combined with TRAIL, the levels of activated caspase 8 and cleaved Bid are substantially increased. In Bax-negative TRAIL-resistant HC-4 colon cancer cells, the combination of PS-341 and TRAIL overcomes the block to activation of the mitochondrial pathway and causes SMAC and cytochrome c release followed by apoptosis. Similarly, murine embryonic fibroblasts lacking Bax undergo apoptosis when exposed to the combination of PS-341 and TRAIL; however, fibroblasts lacking Bak are significantly resistant. Taken together, these findings indicate that PS-341 enhances TRAIL-induced apoptosis by increasing the cleavage of caspase 8, causing Bak-dependent release of mitochondrial proapoptotic proteins.


Subject(s)
Boronic Acids/pharmacology , Membrane Glycoproteins/drug effects , Protease Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/drug effects , Pyrazines/pharmacology , Tumor Necrosis Factor-alpha/drug effects , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Bortezomib , Caspase 9 , Caspases/metabolism , Humans , Proto-Oncogene Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand , bcl-2-Associated X Protein , bcl-X Protein
9.
Curr Top Med Chem ; 5(2): 215-29, 2005.
Article in English | MEDLINE | ID: mdl-15853648

ABSTRACT

This paper reviews recent progress in the design and evaluation of MEK inhibitors as cancer therapeutics. Activation of the Ras / Raf / MEK / MAP kinase pathway has been implicated in uncontrolled cell proliferation and tumor growth. Mutated, oncogenic forms of Ras are found in 50% of colon, 90% of pancreatic and 30% of lung cancers. Recently, B-Raf mutations have been identified in more than 60% of malignant melanomas and from 40-70% of papillary thyroid cancers. MEK, a dual specificity kinase, is a key player in this pathway; it is downstream of both Ras and Raf and activates ERK1/2 through phosphorylation of key tyrosine and threonine residues. Representative examples of both ATP competitive and non-competitive inhibitors as well as natural product based inhibitors will be discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Biological Factors , Enzyme Inhibitors/chemistry , Humans , Neoplasms/physiopathology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL