Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
BMC Microbiol ; 24(1): 101, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532329

ABSTRACT

BACKGROUND: N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS: We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION: Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.


Subject(s)
Deinococcus , Escherichia coli , N-Acetylmuramoyl-L-alanine Amidase , Escherichia coli/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Alanine , Peptidoglycan/metabolism , Amidohydrolases/metabolism
2.
Proteins ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909647

ABSTRACT

Fungi, though mesophilic, include thermophilic and thermostable species, as well. The thermostability of proteins observed in these fungi is most likely to be attributed to several molecular factors, such as the presence of salt bridges and hydrogen bond interactions between side chains. These factors cannot be generalized for all fungi. Factors impacting thermostability can guide how fungal thermophilic proteins gain thermostability. We curated a dataset of proteins for 14 thermophilic fungi and their evolutionarily closer mesophiles. Additionally, the proteome of Chaetomium thermophilum and its evolutionarily related mesophile Chaetomium globosum was analyzed. Using eggNOG, we categorized the proteomes into clusters of orthologous groups (COGs). While the individual count of proteins is over-represented in mesophiles (for COGs S, G, L, and Q), there are certain features that are significantly enriched in thermophiles (such as charged residues, exposed residues, polar residues, etc.). Since fungi are known to be cellulolytic and chitinolytic by nature, we selected 37 existing carbohydrate-active enzymes (CAZyme) families in Eurotiales, Mucorales, and Sordariales. We looked at closely similar sequences and their modeled structures for further comparison. Comparing solvent accessibilities of thermophilic and mesophilic proteins, exposed and intermediate residues are observed higher in thermophiles whereas buried residues are observed higher in mesophiles. For specific five CAZYme families (GH7, GH11, GH18, GH45, and CBM1) we looked at position-specific substitutions between thermophiles and mesophiles. We also found that there are relatively more intramolecular interactions in thermophiles compared to mesophiles. Thus, we found factors such as surface exposed residues and charged residues that are highly likely to impart thermostability in fungi, and this study sets the stage for further studies in the area of fungal thermostability.

3.
J Virol ; 94(3)2020 01 17.
Article in English | MEDLINE | ID: mdl-31723027

ABSTRACT

To gain insight into the impact of mutations on the viability of the hepatitis C virus (HCV) genome, we created a set of full-genome mutant libraries, differing from the parent sequence as well as each other, by using a random mutagenesis approach; the proportion of mutations increased across these libraries with declining template amount or dATP concentration. The replication efficiencies of full-genome mutant libraries ranged between 71 and 329 focus-forming units (FFU) per 105 Huh7.5 cells. Mutant libraries with low proportions of mutations demonstrated low replication capabilities, whereas those with high proportions of mutations had their replication capabilities restored. Hepatoma cells transfected with selected mutant libraries, with low (4 mutations per 10,000 bp copied), moderate (33 mutations), and high (66 mutations) proportions of mutations, and their progeny were subjected to serial passage. Predominant virus variants (mutants) from these mutant libraries (Mutantl, Mutantm, and Mutanth, respectively) were evaluated for changes in growth kinetics and particle-to-FFU unit ratio, virus protein expression, and modulation of host cell protein synthesis. Mutantm and Mutantl variants produced >3.0-log-higher extracellular progeny per ml than the parent, and Mutanth produced progeny at a rate 1.0-log lower. More than 80% of the mutations were in a nonstructural part of the mutant genomes, the majority were nonsynonymous, and a moderate to large proportion were in the conserved regions. Our results suggest that the HCV genome has the ability to overcome lethal/deleterious mutations because of the high reproduction rate but highly selects for random, beneficial mutations.IMPORTANCE Hepatitis C virus (HCV) in vivo displays high genetic heterogeneity, which is partly due to the high reproduction and random substitutions during error-prone genome replication. It is difficult to introduce random substitutions in vitro because of limitations in inducing mutagenesis from the 5' end to the 3' end of the genome. Our study has overcome this limitation. We synthesized full-length genomes with few to several random mutations in the background of an HCV clone that can recapitulate all steps of the life cycle. Our study provides evidence of the capability of the HCV genome to overcome deleterious mutations and remain viable. Mutants that emerged from the libraries had diverse phenotype profiles compared to the parent, and putative adaptive mutations mapped to segments of the conserved nonstructural genome. We demonstrate the potential utility of our system for the study of sequence variation that ensures the survival and adaptation of HCV.


Subject(s)
Genome, Viral , Hepacivirus/genetics , Mutagenesis , Mutation , Cell Line , Humans , Models, Molecular , Phenotype , Serial Passage , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication
4.
J Exp Bot ; 72(8): 3122-3136, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33528493

ABSTRACT

In C4 species, ß-carbonic anhydrase (CA), localized to the cytosol of the mesophyll cells, accelerates the interconversion of CO2 to HCO3-, the substrate used by phosphoenolpyruvate carboxylase (PEPC) in the first step of C4 photosynthesis. Here we describe the identification and characterization of low CO2-responsive mutant 1 (lcr1) isolated from an N-nitroso-N-methylurea- (NMU) treated Setaria viridis mutant population. Forward genetic investigation revealed that the mutated gene Sevir.5G247800 of lcr1 possessed a single nucleotide transition from cytosine to thymine in a ß-CA gene causing an amino acid change from leucine to phenylalanine. This resulted in severe reduction in growth and photosynthesis in the mutant. Both the CO2 compensation point and carbon isotope discrimination values of the mutant were significantly increased. Growth of the mutants was stunted when grown under ambient pCO2 but recovered at elevated pCO2. Further bioinformatics analyses revealed that the mutation has led to functional changes in one of the conserved residues of the protein, situated near the catalytic site. CA transcript accumulation in the mutant was 80% lower, CA protein accumulation 30% lower, and CA activity ~98% lower compared with the wild type. Changes in the abundance of other primary C4 pathway enzymes were observed; accumulation of PEPC protein was significantly increased and accumulation of malate dehydrogenase and malic enzyme decreased. The reduction of CA protein activity and abundance in lcr1 restricts the supply of bicarbonate to PEPC, limiting C4 photosynthesis and growth. This study establishes Sevir.5G247800 as the major CA allele in Setaria for C4 photosynthesis and provides important insights into the function of CA in C4 photosynthesis that would be required to generate a rice plant with a functional C4 biochemical pathway.


Subject(s)
Carbonic Anhydrases , Photosynthesis , Plant Proteins , Setaria Plant , Carbon Dioxide , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Mesophyll Cells/metabolism , Setaria Plant/enzymology , Setaria Plant/genetics
5.
Plant J ; 100(6): 1176-1192, 2019 12.
Article in English | MEDLINE | ID: mdl-31437324

ABSTRACT

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Subject(s)
Benzoates/metabolism , Cinnamates/metabolism , Ligases/metabolism , Malus/metabolism , Amino Acid Sequence , Ascomycota/pathogenicity , Biphenyl Compounds , Cell Culture Techniques , Gene Expression Regulation, Plant , Genes, Plant , Ligases/chemistry , Malus/genetics , Models, Molecular , Molecular Docking Simulation , Plant Diseases/microbiology , Plant Leaves , Protein Conformation , Sequence Alignment , Sesquiterpenes , Nicotiana , Phytoalexins
6.
Biochem Biophys Res Commun ; 521(4): 991-996, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31727369

ABSTRACT

Mycobacterium fortuitum has emerged as a nosocomial infectious agent and biofilm formation attributed for the presence of this bacterium in hospital environment. Transposon random mutagenesis was used to identify membrane-proteins for biofilm formation in M. fortuitum. Ten mutants were shortlisted from a library of 450 mutants for examine their biofilm forming ability. Comparative biofilm ability with respect to wild type M. fortuitum ATCC 6841 showed an altered and delayed biofilm formation in one mutant namely, MT721. Sequence analysis revealed mutation in anthranilate phosphoribosyl transferase (MftrpD), which is associated with tryptophan operon. Functional interaction study of TrpD protein through STRING showed its interaction with chorismate utilizing proteins, majorly involved in synthesis of aromatic amino acid and folic acid, suggesting that biofilm establishment and maintenance requires components of central metabolism. Our study indicates important role of MftrpD in establishment and maintenance of biofilm by M. fortuitum, which may further be explored for drug discovery studies against mycobacterial infections.


Subject(s)
Biofilms/growth & development , DNA Transposable Elements/genetics , Mutagenesis, Insertional/genetics , Mutation/genetics , Mycobacterium fortuitum/genetics , Mycobacterium fortuitum/physiology , Anthranilate Phosphoribosyltransferase/chemistry , Anthranilate Phosphoribosyltransferase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chorismic Acid/metabolism , Protein Interaction Mapping , Protein Structure, Secondary
7.
Biochemistry ; 55(36): 5142-54, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27560143

ABSTRACT

C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-ß-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-ß-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar ß-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.


Subject(s)
Aminoglycosides/biosynthesis , Anti-Bacterial Agents/biosynthesis , Sarcoglycans/chemistry , Streptomyces/metabolism , Catalysis , Crystallography, X-Ray , Enediynes , Humans , Hydroxylation
8.
J Biol Chem ; 290(43): 26249-58, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26240141

ABSTRACT

Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.


Subject(s)
Glucose 1-Dehydrogenase/chemistry , Pentoses/biosynthesis , Amino Acid Sequence , Carbohydrate Sequence , Crystallography, X-Ray , Glucose 1-Dehydrogenase/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Pentoses/chemistry , Protein Conformation , Sequence Homology, Amino Acid
9.
RNA ; 20(6): 815-24, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24757168

ABSTRACT

Aptamers can be highly specific for their targets, which implies precise molecular recognition between aptamer and target. However, as small polymers, their structures are more subject to environmental conditions than the more constrained longer RNAs such as those that constitute the ribosome. To understand the balance between structural and environmental factors in establishing ligand specificity of aptamers, we examined the RNA aptamer (NEO1A) previously reported as specific for neomycin-B. We show that NEO1A can recognize other aminoglycosides with similar affinities as for neomycin-B and its aminoglycoside specificity is strongly influenced by ionic strength and buffer composition. NMR and 2-aminopurine (2AP) fluorescence studies of the aptamer identified a flexible pentaloop and a stable binding pocket. Consistent with a well-structured binding pocket, docking analysis results correlated with experimental measures of the binding energy for most ligands. Steady state fluorescence studies of 2AP-substituted aptamers confirmed that A16 moves to a more solvent accessible position upon ligand binding while A14 moves to a less solvent accessible position, which is most likely a base stack. Analysis of binding affinities of NEO1A sequence variants showed that the base in position 16 interacts differently with each ligand and the interaction is a function of the buffer constituents. Our results show that the pentaloop provides NEO1A with the ability to adapt to external influences on its structure, with the critical base at position 16 adjusting to incorporate each ligand into a stable pocket by hydrophobic interactions and/or hydrogen bonds depending on the ligand and the ionic environment.


Subject(s)
Aptamers, Nucleotide/chemistry , Framycetin/chemistry , RNA/chemistry , 2-Aminopurine/chemistry , Aminoglycosides/chemistry , Binding Sites , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Nucleic Acid Conformation , Osmolar Concentration , Substrate Specificity
10.
Proteins ; 83(2): 383-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25354690

ABSTRACT

Proteins belonging to the cupin superfamily have a wide range of catalytic and noncatalytic functions. Cupin proteins commonly have the capacity to bind a metal ion with the metal frequently determining the function of the protein. We have been investigating the function of homologous cupin proteins that are conserved in more than 40 species of bacteria. To gain insights into the potential function of these proteins we have solved the structure of Plu4264 from Photorhabdus luminescens TTO1 at a resolution of 1.35 Å and identified manganese as the likely natural metal ligand of the protein.


Subject(s)
Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Manganese/chemistry , Models, Molecular , Photorhabdus/chemistry , Protein Structure, Secondary
11.
OMICS ; 28(2): 49-58, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315781

ABSTRACT

Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the Bacillus subtilis model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in B. subtilis. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered B. subtilis strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr-1 at 20 mmol gDw-1 hr-1 of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in B. subtilis. Importantly, we found that the pgk and ctaD genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.


Subject(s)
Bacillus subtilis , Carbohydrate Metabolism , Bacillus subtilis/genetics , Fermentation , Fructans , Computer Simulation
12.
Mitochondrion ; 76: 101870, 2024 May.
Article in English | MEDLINE | ID: mdl-38471579

ABSTRACT

Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic-sulfur interactions were destabilizing in the mutants. Overall, these in-silico analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.


Subject(s)
DNA Polymerase gamma , Mitochondrial Diseases , Molecular Dynamics Simulation , Humans , DNA Polymerase gamma/genetics , Mitochondrial Diseases/genetics , Child , Male , Child, Preschool , Female , India , Infant , Genetic Heterogeneity , Electron Transport/genetics , Adolescent , Mutation , Exome Sequencing
13.
Sci Rep ; 14(1): 12935, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839973

ABSTRACT

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Subject(s)
Peptides , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Mice , Peptides/pharmacology , Peptides/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Molecular Docking Simulation , A549 Cells , Molecular Dynamics Simulation , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/therapeutic use , Protein Binding , Disease Models, Animal
14.
Proteins ; 81(7): 1277-82, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23526584

ABSTRACT

The molecule known as SF2575 from Streptomyces sp. is a tetracycline polyketide natural product that displays antitumor activity against murine leukemia P388 in vivo. In the SF2575 biosynthetic pathway, SsfS6 has been implicated as the crucial C-glycosyltransferase (C-GT) that forms the C-C glycosidic bond between the sugar and the SF2575 tetracycline-like scaffold. Here, we report the crystal structure of SsfS6 in the free form and in complex with TDP, both at 2.4 Å resolution. The structures reveal SsfS6 to adopt a GT-B fold wherein the TDP and docked putative aglycon are consistent with the overall C-glycosylation reaction. As one of only a few existing structures for C-glycosyltransferases, the structures described herein may serve as a guide to better understand and engineer C-glycosylation.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Proteins/chemistry , Crystallography, X-Ray , Tetracyclines/chemistry , Animals , Glycosylation , Glycosyltransferases/biosynthesis , Glycosyltransferases/chemistry , Leukemia P388/drug therapy , Leukemia P388/metabolism , Leukemia P388/pathology , Mice , Streptomyces/chemistry , Streptomyces/metabolism , Tetracyclines/biosynthesis
15.
Microbiol Res ; 272: 127373, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37058783

ABSTRACT

BACKGROUND: Treatment of Candida albicans associated infections is often ineffective in the light of resistance, with an urgent need to discover novel antimicrobials. Fungicides require high specificity and can contribute to antifungal resistance, so inhibition of fungal virulence factors is a good strategy for developing new antifungals. OBJECTIVES: Examine the impact of four plant-derived essential oil components (1,8-cineole, α-pinene, eugenol, and citral) on C. albicans microtubules, kinesin motor protein Kar3 and morphology. METHODS: Microdilution assays were used to determine minimal inhibitory concentrations, microbiological assays assessed germ tube, hyphal and biofilm formation, confocal microscopy probed morphological changes and localization of tubulin and Kar3p, and computational modelling was used to examine the theoretical binding of essential oil components to tubulin and Kar3p. RESULTS: We show for the first time that essential oil components delocalize the Kar3p, ablate microtubules, and induce psuedohyphal formation with reduced biofilm formation. Single and double deletion mutants of kar3 were resistant to 1,8-cineole, sensitive to α-pinene and eugenol, but unimpacted by citral. Strains with homozygous and heterozygous Kar3p disruption had a gene-dosage effect for all essential oil components, resulting in enhanced resistance or susceptibility patterns that were identical to that of cik1 mutants. The link between microtubule (αß-tubulin) and Kar3p defects was further supported by computational modeling, showing preferential binding to αß-tubulin and Kar3p adjacent to their Mg2+-binding sites. CONCLUSION: This study highlights how essential oil components interfere with the localization of the kinesin motor protein complex Kar3/Cik1 and disrupt microtubules, leading to their destabilization which results in hyphal and biofilm defects.


Subject(s)
Oils, Volatile , Saccharomyces cerevisiae Proteins , Candida albicans/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Tubulin/genetics , Tubulin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Oils, Volatile/pharmacology , Eugenol/metabolism , Eucalyptol/metabolism , Microtubules/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Microtubule Proteins/metabolism
16.
Comput Struct Biotechnol J ; 21: 519-534, 2023.
Article in English | MEDLINE | ID: mdl-36618989

ABSTRACT

Deinococcus indicus DR1 is a novel Gram-negative bacterium, isolated from the Dadri wetlands in Uttar Pradesh, India. In addition to being radiation-resistant, the rod-shaped, red-pigmented organism shows extraordinary resistance to arsenic. The proteins of the corresponding ars gene cluster involved in arsenic extrusion in D. indicus DR1 have not yet been characterized. Additionally, how these proteins regulate each other providing arsenic resistance is still unclear. Here, we present a computational model of the operonic structure and the corresponding characterization of the six proteins of the ars gene cluster in D. indicus DR1. Additionally, we show the expression of the genes in the presence of arsenic using qRT-PCR. The ars gene cluster consists of two transcriptional regulators (ArsR1, ArsR2), two arsenate reductases (ArsC2, ArsC3), one metallophosphatase family protein (MPase), and a transmembrane arsenite efflux pump (ArsB). The transcriptional regulators are trans-acting repressors, and the reductases reduce arsenate (As5+) ions to arsenite (As3+) ions for favourable extrusion. The proteins modelled using RoseTTAFold, and their conformationally stable coordinates obtained after MD simulation indicate their various functional roles with respect to arsenic. Excluding ArsB, all the proteins belong to the α + ß class of proteins. ArsB, being a membrane protein, is fully α-helical, with 12 transmembrane helices. The results show the degree of similarity or divergence of the mechanism utilized by these proteins of ars gene cluster in D. indicus DR1 to confer high levels of arsenic tolerance. This structural characterization study of the ars genes will enable new and deeper insights of arsenic tolerance.

17.
J Biomol Struct Dyn ; 41(24): 15386-15399, 2023.
Article in English | MEDLINE | ID: mdl-36927454

ABSTRACT

The fungi, Cryptococcus neoformans cause major infections such as cryptococcal meningitis and cryptococcosis. Therefore, we explored the use of Thioredoxin reductase (Trr1) from C. neoformans as a gene target for the development of novel antifungal agents. Trr1 plays an essential role in the survival in the oxidative environment of macrophages and is important for the virulence of C. neoformans. During the thermochemical conversion (pyrolysis) of lignocellulosic biomass (LCB), a cocktail of compounds is produced by the decomposition and degradation. In general, LCB-derived cocktail of compounds is a rich source of aromatic compounds that have been shown to be antifungal in nature. Usually, the aqueous phase produced during biomass pyrolysis is generally regarded as waste. Here, we used Parthenium hysterophorus biomass as the antifungal source and obtained the aqueous phase after pyrolysis. Using GC-MS analysis of the aqueous phase collected from P. hysterophorus biomass revealed the presence of a large number of aromatic and organic compounds. Using virtual screening, the compounds present in the aqueous phase were docked against Trr1 using GLIDE. Two promising candidates were analyzed further by performing molecular dynamics simulation using GROMACS, to establish stable interactions. We validated the computational results with clustering analysis. We report that 2,4-Di-tertbutyl phenol and 1H-Pyrazole, 4-ethyl-3,5-dimethyl have a potent antifungal property and we postulate that they could be a potent antifungal agent against Trr1 of C. neoformans.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Antifungal Agents/pharmacology , Cryptococcus neoformans/genetics , Pyrolysis , Cryptococcosis/microbiology , Virulence , Microbial Sensitivity Tests
18.
Comput Biol Chem ; 99: 107708, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717732

ABSTRACT

Kinesins involved in mitotic cell division have gained prominence as promising chemotherapy targets. One such kinesin, EG5, a motor protein responsible for cell division, is a validated chemotherapy target with several compounds at various stages of clinical trials. EG5 has an active site and two different allosteric sites that are known to have ligand specificity. Upon ligand binding, EG5's motor domain will no longer undergo nucleotide-dependent conformational changes required to complete the catalytic cycle. However, there is a lack of in-depth knowledge on the mechanism of inhibitor binding to the two different allosteric sites. To understand the EG5's inhibition mechanism and interactions at allosteric sites and other functionally important regions, we generated two coarse-grained models, Gaussian Network Model (GNM) and Anisotropic Network Model (ANM), to identify the dynamics and its correlation to EG5's function. The first three slowest modes of GNM showed marked differences between the various models of EG5. In the first mode, when the inhibitor is bound at allosteric site 1, there is a presence of a hinge region around residue 166, which is not found when the inhibitor is bound at allosteric site 2 or allosteric sites 1 and 2. The third slowest mode showed a distinctive positively correlated region when the inhibitor is bound at allosteric site 2. These differences indicated that the mechanism of binding at allosteric site 1 and allosteric site 2 are unique. Further, it was observed that the simultaneous ligand binding at allosteric sites 1 and 2 shares structural dynamics and interactions that were found while ligand binds at allosteric sites 1 and 2 independently, leading to a new mechanism. Taken together, our observations suggest that there are different mechanisms at play in each inhibitor bound system considered.


Subject(s)
Kinesins/metabolism , Allosteric Site , Binding Sites , Drug Design , Humans , Kinesins/antagonists & inhibitors , Ligands
19.
Front Cell Infect Microbiol ; 12: 1020391, 2022.
Article in English | MEDLINE | ID: mdl-36329825

ABSTRACT

Bacterial biofilms, often as multispecies communities, are recalcitrant to conventional antibiotics, making the treatment of biofilm infections a challenge. There is a push towards developing novel anti-biofilm approaches, such as antimicrobial peptides (AMPs), with activity against specific biofilm targets. In previous work, we developed Biofilm-AMP, a structural and functional repository of AMPs for biofilm studies (B-AMP v1.0) with more than 5000 structural models of AMPs and a vast library of AMP annotations to existing biofilm literature. In this study, we present an upgraded version of B-AMP, with a focus on existing and novel bacterial biofilm targets. B-AMP v2.0 hosts a curated collection of 2502 biofilm protein targets across 473 bacterial species, with structural protein models and functional annotations from PDB, UniProt, and PubMed databases. The biofilm targets can be searched for using the name of the source organism, and function and type of protein, and results include designated Target IDs (unique to B-AMP v2.0), UniProt IDs, 3D predicted protein structures, PDBQT files, pre-defined protein functions, and relevant scientific literature. To present an example of the combined applicability of both, the AMP and biofilm target libraries in the repository, we present two case studies. In the first case study, we expand an in silico pipeline to evaluate AMPs against a single biofilm target in the multidrug resistant, bacterial pathogen Corynebacterium striatum, using 3D protein-peptide docking models from previous work and Molecular Dynamics simulations (~1.2µs). In the second case study, we build an in silico pipeline to identify candidate AMPs (using AMPs with both anti-Gram positive and anti-Gram negative activity) against two biofilm targets with a common functional annotation in Pseudomonas aeruginosa and Staphylococcus aureus, widely-encountered bacterial co-pathogens. With its enhanced structural and functional capabilities, B-AMP v2.0 serves as a comprehensive resource for AMP investigations related to biofilm studies. B-AMP v2.0 is freely available at https://b-amp.karishmakaushiklab.com and will be regularly updated with structural models of AMPs and biofilm targets, as well as 3D protein-peptide interaction models for key biofilm-forming pathogens.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteria , Biofilms , Microbial Sensitivity Tests
20.
BMC Struct Biol ; 11: 10, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21291533

ABSTRACT

BACKGROUND: Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. RESULTS: Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. CONCLUSIONS: Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.


Subject(s)
Bacteria/enzymology , Cellulase/chemistry , Cellulase/metabolism , Evolution, Molecular , Models, Molecular , Protein Folding , Protein Stability , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL