Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cerebellum ; 23(2): 620-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36781689

ABSTRACT

The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.


Subject(s)
Cerebellar Nuclei , Cerebellum , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/physiology , Cerebellum/physiology , Neurons/physiology
2.
BMC Genomics ; 24(1): 351, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365500

ABSTRACT

BACKGROUND: The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS: Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS: The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ).


Subject(s)
Brain , Gene Expression Regulation, Developmental , Transcription, Genetic , Sequence Analysis, RNA , Brain/embryology , Brain/metabolism , Animals , Mice , Enhancer Elements, Genetic , RNA/genetics
3.
BMC Genomics ; 20(1): 718, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533632

ABSTRACT

BACKGROUND: The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development. RESULTS: We used the HeliScopeCAGE library sequencing on cerebellar samples over 8 embryonic and 4 early postnatal times. This study showcases temporal expression pattern changes during cerebellar development. Through a bioinformatics analysis that focused on transcription factors, their promoters and binding sites, we identified genes that appear as strong candidates for involvement in cerebellar development. We selected several candidate transcriptional regulators for validation experiments including qRT-PCR and shRNA transcript knockdown. We observed marked and reproducible developmental defects in Atf4, Rfx3, and Scrt2 knockdown embryos, which support the role of these genes in cerebellar development. CONCLUSIONS: The successful identification of these novel gene regulators in cerebellar development demonstrates that the FANTOM5 cerebellum time series is a high-quality transcriptome database for functional investigation of gene regulatory networks in cerebellar development.


Subject(s)
Cerebellum/growth & development , Gene Expression Profiling , Nucleotide Motifs/genetics , Transcription, Genetic/genetics , Activating Transcription Factor 4/deficiency , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Cerebellum/embryology , Cerebellum/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Regulatory Factor X Transcription Factors/deficiency , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Int J Nurs Educ Scholarsh ; 16(1)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31863696

ABSTRACT

Background Simulation has proven valuable in nursing communication training, but there are limited studies comparing the effectiveness of different training methods, especially in the area of adverse event disclosure (AED) training. Therefore, this study aimed to examine the impact of two training methods, peer role-play (PRP) and simulated patients (SP) on the self-efficacy and performance of nursing students in AED in a simulated environment. Methods Forty-four nursing students participated. Students' self-efficacy toward AED was assessed using the pre/post-test method. Also, students' performance was evaluated after the simulation encounter. Results It showed a significant difference in self-efficacy between the groups. However, no significant difference emerged between the groups in performance. Conclusion This study provides a basis for comparison of these two methods in patient communication training. Educators should consider their resources and expected learning outcomes in designing the emotionally draining adverse event disclosure training.


Subject(s)
Disclosure , Education, Nursing/methods , Patient Simulation , Peer Group , Role Playing , Clinical Competence , Communication , Hong Kong , Humans , Nurse-Patient Relations , Self Efficacy
5.
Cerebellum ; 17(3): 308-325, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29307116

ABSTRACT

Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.


Subject(s)
Cerebellum/embryology , Cerebellum/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Animals , Computer Simulation , Gene Expression Profiling , Gene Expression Regulation, Developmental , In Situ Hybridization , Laser Capture Microdissection , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome
6.
J Neurosci ; 36(35): 9057-69, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27581449

ABSTRACT

UNLABELLED: Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons. SIGNIFICANCE STATEMENT: Pax6 is a key molecule in development. Pax6 is best known as the master control gene in eye development with mutations causing aniridia in humans. Pax6 also plays important developmental roles in the cortex and olfactory bulb. During cerebellar development, Pax6 is robustly expressed in the germinal zone of all glutamatergic neurons [cerebellar nuclear (CN) neurons, granule cells, and unipolar brush cells (UBCs)]. Past work has not found abnormalities in the CN and UBC populations. Our study reveals that the Pax6-null mutation dramatically affects these cells and identifies Pax6 as a key regulator of cell survival in CN neurons and of cell production in UBCs. The present study shows how Pax6 is key to the development of glutamatergic cells in the cerebellum.


Subject(s)
Cerebellum/embryology , Cerebellum/metabolism , Gene Expression Regulation, Developmental/genetics , PAX6 Transcription Factor/metabolism , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bromodeoxyuridine/metabolism , Caspase 3/metabolism , Cell Count , Cerebellum/cytology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Glutamic Acid/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Mutant Strains , Microscopy, Confocal , PAX6 Transcription Factor/genetics , Repressor Proteins , T-Box Domain Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Cerebellum ; 16(1): 40-54, 2017 02.
Article in English | MEDLINE | ID: mdl-26837618

ABSTRACT

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by impaired and disordered language, decreased social interactions, stereotyped and repetitive behaviors, and impaired fine and gross motor skills. It has been well established that cerebellar abnormalities are one of the most common structural changes seen in the brains of people diagnosed with autism. Common cerebellar pathology observed in autistic individuals includes variable loss of cerebellar Purkinje cells (PCs) and increased numbers of reactive neuroglia in the cerebellum and cortical brain regions. The Lc/+ mutant mouse loses 100Ā % of cerebellar PCs during the first few weeks of life and provided a valuable model to study the effects of developmental PC loss on underlying structural and functional changes in cerebellar neural circuits. Lurcher (Lc) chimeric mice were also generated to explore the link between variable cerebellar pathology and subsequent changes in the structure and function of cerebellar neurons and neuroglia. Chimeras with the most severe cerebellar pathology (as quantified by cerebellar PC counts) had the largest changes in cFos expression (an indirect reporter of neural activity) in cerebellar granule cells (GCs) and cerebellar nucleus (CN) neurons. In addition, Lc chimeras with the fewest PCs also had numerous reactive microglia and Bergmann glia located in the cerebellar cortex. Structural and functional abnormalities observed in the cerebella of Lc chimeras appeared to be along a continuum, with the degree of pathology related to the number of PCs in individual chimeras.


Subject(s)
Cerebellum/pathology , Neuroglia/pathology , Neurons/pathology , Animals , Autism Spectrum Disorder , Cell Death , Cerebellum/metabolism , Chimera , Female , Gene Expression , Gliosis/metabolism , Gliosis/pathology , Immunohistochemistry , Male , Mice, Neurologic Mutants , Motor Activity/physiology , Neural Pathways/metabolism , Neural Pathways/pathology , Neuroglia/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rotarod Performance Test , Severity of Illness Index
8.
J Neurosci ; 34(37): 12527-37, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209290

ABSTRACT

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning/physiology , Cerebellum/embryology , Cerebellum/metabolism , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Paired Box Transcription Factors/metabolism , Receptors, G-Protein-Coupled/metabolism , Repressor Proteins/metabolism , Animals , Gene Expression Regulation, Developmental/physiology , Mice , Mice, Knockout , Mice, Transgenic , PAX6 Transcription Factor , Tissue Distribution
9.
Front Mol Neurosci ; 17: 1356544, 2024.
Article in English | MEDLINE | ID: mdl-38742226

ABSTRACT

In the early cerebellar primordium, there are two progenitor zones, the ventricular zone (VZ) residing atop the IVth ventricle and the rhombic lip (RL) at the lateral edges of the developing cerebellum. These zones give rise to the several cell types that form the GABAergic and glutamatergic populations of the adult cerebellum, respectively. Recently, an understanding of the molecular compartmentation of these zones has emerged. To add to this knowledge base, we report on the Msx genes, a family of three transcription factors, that are expressed downstream of Bone Morphogenetic Protein (BMP) signaling in these zones. Using fluorescent RNA in situ hybridization, we have characterized the Msx (Msh Homeobox) genes and demonstrated that their spatiotemporal pattern segregates specific regions within the progenitor zones. Msx1 and Msx2 are compartmentalized within the rhombic lip (RL), while Msx3 is localized within the ventricular zone (VZ). The relationship of the Msx genes with an early marker of the glutamatergic lineage, Atoh1, was examined in Atoh1-null mice and it was found that the expression of Msx genes persisted. Importantly, the spatial expression of Msx1 and Msx3 altered in response to the elimination of Atoh1. These results point to the Msx genes as novel early markers of cerebellar progenitor zones and more importantly to an updated view of the molecular parcellation of the RL with respect to the canonical marker of the RL, Atoh1.

10.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026714

ABSTRACT

Tagmentation combines DNA fragmentation and sequencing adapter addition by leveraging the transposition activity of the bacterial cut-and-paste Tn5 transposase, to enable efficient sequencing library preparation. Here we present an open-source protocol for the generation of multi-purpose hyperactive Tn5 transposase, including its benchmarking in CUT&Tag, bulk and single-cell ATAC-seq. The OpenTn5 protocol yields multi-milligram quantities of pG-Tn5E54K, L372P protein per liter of E. coli culture, sufficient for thousands of tagmentation reactions and the enzyme retains activity in storage for more than a year.

11.
Eur Rev Aging Phys Act ; 20(1): 24, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114901

ABSTRACT

BACKGROUND: Physical activity was known to be the protective factor against frailty. Technology acceptance is associated with behavioural intention to technology usage. Technology has been effective in promoting healthy behaviour of physical activity. The purposes of this study were to examine the association between physical activity and technology acceptance with frailty and examine the moderation effect of technology acceptance on physical activity and frailty. We hypothesize that 1) physical activity and technology acceptance are associated with frailty, and 2) technology acceptance moderates the association of physical activity with frailty. METHODS: This study employed a cross-sectional design and was conducted in the community settings of Hong Kong in 2021. Eligible participants were old people aged ≥60 and were community-dwelling. Key variables included physical activity measured by Rapid Assessment of Physical Activity (RAPA), social network measured by Lubben Social Network Scale-Six items (LSNS-6); depressive symptoms measured by Patient Health Questionnaire-Nine items (PHQ-9), technology acceptance measured by Senior Technology Acceptance Model-14 items (STAM-14) and frailty measured by Fatigue, Resistance, Ambulation, Illnesses, & Loss of Weight scale (FRAIL). Ordinal logistic regression was employed to test the hypotheses. The moderation effect was examined by introducing an interaction term formed by the multiplication of an independent variable (i.e., physical activity) and a moderating variable (i.e., technology acceptance). RESULTS: This study recruited 380 eligible participants with a mean age of 66.5 years. Technology acceptance (Beta = - 0.031, p < 0.001, Pseudo-R2 = 0.087) and physical activity (Beta = - 0.182, p = 0.003, Pseudo-R2 = 0.027) were associated with frailty in the unadjusted models. Technology acceptance (Beta = - 0.066, p < 0.001) and physical activity (Beta = - 1.192, p < 0.001) were also associated with frailty in the fully adjusted model (Pseudo-R2 = 0.352). Interaction term formed by the multiplication of technology acceptance and physical activity (Beta = 0.012, p = 0.001) was associated with frailty. Physical activity was significantly associated with frailty in the lower technology acceptance subgroup (Beta = - 0.313, p = 0.002) in the subgroup analysis. However, in the subgroup of higher technology acceptance, the association of physical activity (Beta = 0.104, p = 408) on frailty became positive but not significant. CONCLUSIONS: This study showed that physical activity and technology acceptance were associated with frailty, and technology acceptance moderated the association of physical activity with frailty. This study recommends engaging older adults in physical activity to combat frailty preferentially in those with a lower level of technology acceptance.

12.
Nurs Open ; 10(3): 1545-1555, 2023 03.
Article in English | MEDLINE | ID: mdl-36250923

ABSTRACT

AIM: Student engagement is an important factor to the success of higher education. This study aimed to develop a Generic Student Engagement Scale (GSES) for face-to-face and online learning. DESIGN: This was a cross-sectional psychometric study. METHODS: We tested the psychometric properties of GSES in 451 students at the school of nursing and health studies undertaking online and face-to-face learning at a local university in Hong Kong between 2016 and 2018. RESULTS: Content validity, face validity and test-retest reliability of GSES were satisfactory. The 29-item GSESĀ contains five factors "self-regulated learning," "cognitive strategy use," "experienced emotion," "teacher-student interaction," and "enjoyment of school life" with the good model fit. The GSES is a reliable and valid psychometric instrument to measure student engagement in face-to-face and online learning among undergraduates and higher diploma students. Our results implied that student engagement can be assessed in routine or research by using our instrument.


Subject(s)
Students, Nursing , Humans , Reproducibility of Results , Cross-Sectional Studies , Students, Nursing/psychology , Learning , Delivery of Health Care
13.
Eur J Neurosci ; 36(7): 2888-98, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22817342

ABSTRACT

The Pax6 transcription factor is expressed in cerebellar granule cells and when mutated, as in the Sey/Sey mouse, produces granule cells with disturbed survival and migration and with defects in neurite extension. The impact of Pax6 on other genes in the context of cerebellar development has not been identified. In this study, we performed transcriptome comparisons between wildtype and Pax6-null whole cerebellar tissue at embryonic day (E) 13.5, 15.5 and 18.5 using Affymetrix arrays (U74Av2). Statistical analyses identified 136 differentially regulated transcripts (FDR 0.05, 1.2-fold change cutoff) over time in Pax6-null cerebellar tissue. In parallel we examined the Math1-null granuloprival cerebellum and identified 228 down-regulated transcripts (FDR 0.05, 1.2-fold change cutoff). The intersection of these two microarray datasets produced a total of 21 differentially regulated transcripts. For a subset of the identified transcripts, we used qRT-PCR to validate the microarray data and demonstrated the expression in the rhombic lip lineage and differential expression in Pax6-null cerebellum with in situ hybridisation analysis. The candidate genes identified in this way represent direct or indirect Pax6-downstream genes involved in cerebellar development.


Subject(s)
Cerebellum/metabolism , Eye Proteins/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Transcriptome/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cerebellum/embryology , Comparative Genomic Hybridization , Eye Proteins/metabolism , Gene Expression Profiling , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , RNA, Messenger/metabolism , Repressor Proteins/metabolism
14.
Front Mol Neurosci ; 15: 921901, 2022.
Article in English | MEDLINE | ID: mdl-35935334

ABSTRACT

The cerebellar nuclear (CN) neurons are a molecularly heterogeneous population whose specification into the different cerebellar nuclei is defined by the expression of varying sets of transcription factors. Here, we present a novel molecular marker, Pou3f1, that delineates specific sets of glutamatergic CN neurons. The glutamatergic identity of Pou3f1+ cells was confirmed by: (1) the co-expression of vGluT2, a cell marker of glutamatergic neurons; (2) the lack of co-expression between Pou3f1 and GAD67, a marker of GABAergic neurons; (3) the co-expression of Atoh1, the master regulator required for the production of all cerebellar glutamatergic lineages; and (4) the absence of Pou3f1-expressing cells in the Atoh1-null cerebellum. Furthermore, the lack of Pax6 and Tbr1 expression in Pou3f1+ cells reveals that Pou3f1-expressing CN neurons specifically settle in the interposed and dentate nuclei. In addition, the Pou3f1-labeled glutamatergic CN neurons can be further classified by the expression of Brn2 and Irx3. The results of the present study align with previous findings highlighting that the survival of the interposed and dentate CN neurons is largely independent of Pax6. More importantly, the present study extends the field's collective knowledge of the molecular diversity of cerebellar nuclei.

15.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35942939

ABSTRACT

We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas, where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.


Subject(s)
Autism Spectrum Disorder , Enhancer Elements, Genetic , Animals , Autism Spectrum Disorder/genetics , Gene Expression Regulation, Developmental , Mice , Neurogenesis/genetics , Transcription Factors/metabolism
16.
G3 (Bethesda) ; 9(12): 4197-4207, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31624139

ABSTRACT

It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.


Subject(s)
Drosophila Proteins/biosynthesis , Gene Expression Regulation , HSP70 Heat-Shock Proteins/biosynthesis , Longevity , Oxidative Stress , Animals , Dehydration/genetics , Dehydration/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , HSP70 Heat-Shock Proteins/genetics
17.
Sci Rep ; 9(1): 2479, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792482

ABSTRACT

Intermittent fasting (IF) is an effective dietary intervention to counteract obesity-associated metabolic abnormalities. Previously, we and others have highlighted white adipose tissue (WAT) browning as the main underlying mechanism of IF-mediated metabolic benefits. However, whether IF retains its efficacy in different models, such as genetically obese/diabetic animals, is unknown. Here, leptin-deficient ob/ob mice were subjected to 16 weeks of isocaloric IF, and comprehensive metabolic phenotyping was conducted to assess the metabolic effects of IF. Unlike our previous study, isocaloric IF-subjected ob/ob animals failed to exhibit reduced body weight gain, lower fat mass, or decreased liver lipid accumulation. Moreover, isocaloric IF did not result in increased thermogenesis nor induce WAT browning in ob/ob mice. These findings indicate that isocaloric IF may not be an effective approach for regulating body weight in ob/ob animals, posing the possible limitations of IF to treat obesity. However, despite the lack of improvement in insulin sensitivity, isocaloric IF-subjected ob/ob animals displayed improved glucose tolerance as well as higher postprandial insulin level, with elevated incretin expression, suggesting that isocaloric IF is effective in improving nutrient-stimulated insulin secretion. Together, this study uncovers the insulinotropic effect of isocaloric IF, independent of adipose thermogenesis, which is potentially complementary for the treatment of type 2 diabetes.


Subject(s)
Fasting/metabolism , Obesity/metabolism , Thermogenesis , Animals , Insulin Resistance , Lipid Metabolism , Male , Mice , Mice, Obese , Obesity/diet therapy , Phenotype
18.
J Vis Exp ; (141)2018 11 17.
Article in English | MEDLINE | ID: mdl-30507917

ABSTRACT

Adipose tissue is an important metabolic organ with high plasticity and is responsive to environmental stimuli and nutrient status. As such, various techniques have been developed to study the morphology and biology of adipose tissue. However, conventional visualization methods are limited to studying the tissue in 2D sections, failing to capture the 3D architecture of the whole organ. Here we present whole-mount staining, an immunohistochemistry method that preserves intact adipose tissue morphology with minimal processing steps. Hence, the structures of adipocytes and other cellular components are maintained without distortion, achieving the most representative 3D visualization of the tissue. In addition, whole-mount staining can be combined with lineage tracing methods to determine cell fate decisions. However, this technique has some limitations to providing accurate information regarding deeper parts of adipose tissue. To overcome this limitation, whole-mount staining can be further combined with tissue clearing techniques to remove the opaqueness of tissue and allow for complete visualization of entire adipose tissue anatomy using light-sheet fluorescent microscopy. Therefore, a higher resolution and more accurate representation of adipose tissue structures can be captured with the combination of these techniques.


Subject(s)
Adipose Tissue, White/chemistry , Adipose Tissue, White/cytology , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Adipose Tissue/chemistry , Adipose Tissue/cytology , Animals , Immunohistochemistry , Microscopy, Fluorescence/methods
19.
Leuk Res ; 31(2): 157-62, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16837044

ABSTRACT

AML patients with normal karyotype comprise the largest subgroup ( approximately 50%) but have a highly heterogeneous clinical course. By multi-parameter flow cytometry we analyzed CD7 expression along with other phenotypic markers in 185 patients with normal-karyotype AML. CD7 was expressed in 68 (37%) patients. CD7 expression was associated with younger age (P=0.024) but not with sex, WBC count, or extramedullary disease. Patients expressing CD7 had significant shorter disease free (DFS) and post-remission survivals (PRS) than patients without CD7 (DFS of 12 months versus 42 months, P=0.005; PRS of 15 months versus 33 months, P=0.013). We also found that expression of CD34 or HLA-DR was associated with lower CR rate (P=0.0007 and P=0.019, respectively) but did not affect DFS or OS. Furthermore, as for all AML patients, we demonstrated that in the normal karyotypic subgroup, patients with higher WBC counts (>50) and older age (>60 years) had lower CR rate (P=0.003 and P=0.0157, respectively) and shorter OS (P

Subject(s)
Antigens, CD7/biosynthesis , Antigens, CD7/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid/genetics , Acute Disease , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Flow Cytometry/methods , Humans , Immunophenotyping , Karyotyping , Leukemia, Myeloid/therapy , Male , Middle Aged , Predictive Value of Tests , Remission Induction , Survival Rate , Treatment Outcome
20.
Neuroscience ; 354: 30-42, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28450263

ABSTRACT

Wntless (Wls) is implicated in the Wnt signaling pathway by regulating the secretion of Wnt molecules. During brain development, Wls is expressed in the isthmic organizer (ISO) and rhombic lip (RL). Wls regulates Wnt1 secretion at the ISO which is required to induce midbrain-hindbrain structures. However, Wls function in the RL is not known. Here, we employed Nestin-cre to delete Wls specifically in the RL during mid-gestation. The loss-of-Wls leads to an abnormal RL during development and cerebellar vermis hypoplasia at birth. The Wls conditional knockout (cKO) has rudimentary foliation with an absence of Bergmann glia fibers in the external germinal layer (EGL). The Wls-cKO cerebellum also exhibits ectopia of several cell types and aberrations in granule cell organization. Finally, there is a loss of 85% of unipolar brush cells. From these findings, Wls-expressing cells in the rhombic lip are implicated in the orchestration of cerebellar development.


Subject(s)
Cerebellum/embryology , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Calbindins/metabolism , Cell Differentiation/genetics , Cerebellum/cytology , Cerebellum/metabolism , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Excitatory Amino Acid Transporter 1 , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nestin/genetics , Nestin/metabolism , Neurons/metabolism , PAX6 Transcription Factor/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , T-Box Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL