Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D701-D713, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897356

ABSTRACT

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has resulted in the loss of millions of lives and severe global economic consequences. Every time SARS-CoV-2 replicates, the viruses acquire new mutations in their genomes. Mutations in SARS-CoV-2 genomes led to increased transmissibility, severe disease outcomes, evasion of the immune response, changes in clinical manifestations and reducing the efficacy of vaccines or treatments. To date, the multiple resources provide lists of detected mutations without key functional annotations. There is a lack of research examining the relationship between mutations and various factors such as disease severity, pathogenicity, patient age, patient gender, cross-species transmission, viral immune escape, immune response level, viral transmission capability, viral evolution, host adaptability, viral protein structure, viral protein function, viral protein stability and concurrent mutations. Deep understanding the relationship between mutation sites and these factors is crucial for advancing our knowledge of SARS-CoV-2 and for developing effective responses. To fill this gap, we built COV2Var, a function annotation database of SARS-CoV-2 genetic variation, available at http://biomedbdc.wchscu.cn/COV2Var/. COV2Var aims to identify common mutations in SARS-CoV-2 variants and assess their effects, providing a valuable resource for intensive functional annotations of common mutations among SARS-CoV-2 variants.


Subject(s)
Databases, Genetic , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics , Molecular Sequence Annotation , Genetic Variation
2.
Nucleic Acids Res ; 52(D1): D1253-D1264, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37986230

ABSTRACT

Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial-mesenchymal transition, cell-cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug's Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user's exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets.


Subject(s)
Databases, Factual , Drug Resistance , MicroRNAs , Neoplasms , Humans , Drug Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Internet
3.
Plant Genome ; 16(2): e20317, 2023 06.
Article in English | MEDLINE | ID: mdl-36896476

ABSTRACT

Fully understanding traditional Chinese medicines (TCMs) is still challenging because of the extreme complexity of their chemical components and mechanisms of action. The TCM Plant Genome Project aimed to obtain genetic information, determine gene functions, discover regulatory networks of herbal species, and elucidate the molecular mechanisms involved in the disease prevention and treatment, thereby accelerating the modernization of TCMs. A comprehensive database that contains TCM-related information will provide a vital resource. Here, we present an integrative genome database of TCM plants (IGTCM) that contains 14,711,220 records of 83 annotated TCM-related herb genomes, including 3,610,350 genes, 3,534,314 proteins and corresponding coding sequences, and 4,032,242 RNAs, as well as 1033 non-redundant component records for 68 herbs, downloaded and integrated from the GenBank and RefSeq databases. For minimal interconnectivity, each gene, protein, and component was annotated using the eggNOG-mapper tool and Kyoto Encyclopedia of Genes and Genomes database to acquire pathway information and enzyme classifications. These features can be linked across several species and different components. The IGTCM database also provides visualization and sequence similarity search tools for data analyses. These annotated herb genome sequences in IGTCM database are a necessary resource for systematically exploring genes related to the biosynthesis of compounds that have significant medicinal activities and excellent agronomic traits that can be used to improve TCM-related varieties through molecular breeding. It also provides valuable data and tools for future research on drug discovery and the protection and rational use of TCM plant resources. The IGTCM database is freely available at http://yeyn.group:96/.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL