Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Small ; : e2402402, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949051

ABSTRACT

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

2.
Small ; 19(9): e2205246, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36581560

ABSTRACT

Boosting charge separation and transfer of photoanodes is crucial for providing high viability of photoelectrochemical hydrogen (H2 ) generation. Here, a structural engineering strategy is designed and synthesized for uniformly coating an ultrathin CoFe bimetal-organic framework (CoFe MOF) layer over a BiVO4 photoanode for boosted charge separation and transfer. The photocurrent density of the optimized BiVO4 /CoFe MOF(NA) photoanode reaches a value of 3.92 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), up to 6.03 times that of pristine BiVO4 , due to the greatly increased efficiency of charge transfer and separation. In addition, this photoanode records one onset potential that is considerably shifted negatively when compared to BiVO4 . Transient absorption spectroscopy reveals that the CoFe MOF(NA) prolongs charge recombination lifetime by blocking the hole-transfer pathway from the BiVO4 to its surface trap states. This work sheds light on boosting charge separation and transfer through structural engineering to enhance the photocurrent of photoanodes for solar H2 production.

3.
J Acoust Soc Am ; 150(5): 3608, 2021 11.
Article in English | MEDLINE | ID: mdl-34852573

ABSTRACT

The interfacial tension (IFT) of fluids plays an essential role in industrial, biomedical, and synthetic chemistry applications; however, measuring IFT at ultralow volumes is challenging. Here, we report a novel method for sessile drop tensiometry using surface acoustic waves (SAWs). The IFT of the fluids was determined by acquiring the silhouette of an axisymmetric sessile drop and applying iterative fitting using Taylor's deformation equation. Owing to physiochemical differences, upon interacting with acoustic waves, each microfluid has a different streaming velocity. This streaming velocity dictates any subsequent changes in droplet shape (i.e., height and width). We demonstrate the effectiveness of the proposed SAW-based tensiometry technique using blood plasma to screen for high leptin levels. The proposed device can measure the IFT of microscale liquid volumes (up to 1 µL) with an error margin of only ±5% (at 25 °C), which deviates from previous reported results. As such, this method provides pathologists with a solution for the pre-diagnosis of various blood-related diseases.


Subject(s)
Sound , Surface Tension
4.
Small ; 16(34): e2003007, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32686340

ABSTRACT

The design on synthesizing a sturdy, low-cost, clean, and sustainable electrocatalyst, as well as achieving high performance with low overpotential and good durability toward water splitting, is fairly vital in environmental and energy-related subject. Herein, for the first time the growth of sulfur (S) defect engineered self-supporting array electrode composed of metallic Re and ReS2 nanosheets on carbon cloth (referred as Re/ReS2 /CC) via a facile hydrothermal method and the following thermal treatment with H2 /N2 flow is reported. It is expected that, for example, the as-prepared Re/ReS2 -7H/CC for the electrocatalytic hydrogen evolution reaction (HER) under acidic medium affords a quite low overpotential of 42 mV to achieve a current density of 10 mA cm-2 and a very small Tafel slope of 36 mV decade-1 , which are comparable to some of the promising HER catalysts. Furthermore, in the two-electrode system, a small cell voltage of 1.30 V is recorded under alkaline condition. Characterizations and density functional theory results expound that the introduced S defects in Re/ReS2 -7H/CC can offer abundant active sites to advantageously capture electron, enhance the electron transport capacity, and weaken the adsorption free energy of H* at the active sites, being responsible for its superior electrocatalytic performance.

5.
Inorg Chem ; 59(24): 18374-18383, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33244973

ABSTRACT

A single-crystalline defect-less phosphor is desired for efficient luminescence of the therein doped optical activators. In this paper, microsized MgAl2O4:Mn4+ single-crystal phosphors with bright red luminescence were grown in molten LiCl salt at 950 °C, for application in blue LED pumped white lighting. By comparing the phosphor formation from various Mg2+- and Al3+-bearing sources, both the template-formation and the dissolution-diffusion processes were evidenced to account for the formation of the microsized MgAl2O4:Mn4+ crystallites. Using nano γ-Al2O3 as the Al3+-bearing precursor, the uniform MgAl2O4:Mn4+ microcrystallites with a {111} planes-exposed tetragonal bipyramid morphology were obtained. The photoluminescence property was studied at various temperatures, and Mg ↔ Al anti-site disorder induced luminescence broadening was discussed. The Mn4+ 2Eg → 4A2g transition in MgAl2O4 shows a quite short luminescence wavelength peaking at 651 nm and ultrabroadband emission extending to 850 nm. The luminescence is relatively robust against thermal effect with relatively high thermal quenching temperature of 400 K and activation energy of 0.23 eV. Employing the red-emitting MgAl2O4:Mn4+ crystallites, blue LED pumped white lighting prototypes were fabricated which simulate the solar-like spectrum and show neutral to warm white.

6.
Phys Chem Chem Phys ; 21(27): 14858-14864, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31232403

ABSTRACT

The Ewald3D sum with the tinfoil boundary condition (e3dtf) evaluates the electrostatic energy of a finite unit cell inside an infinitely periodic supercell. Although it has been used as a de facto standard treatment of electrostatics for simulations of extended polar or charged interfaces, the finite-size effect on simulated properties has yet to be fully understood. There is, however, an intuitive way to quantify the average effect arising from the difference between the e3dtf and Coulomb potentials on the response of mobile charges to contact surfaces with fixed charges and/or to an applied external electric field. Although any charged interface formed by mobile countercharges that compensate the fixed charges fluctuates upon a change in the acting electric field, the distance between a pair of oppositely charged interfaces is found to be nearly stationary, which allows an analytic finite-size correction to the amount of countercharges. Application of the theory to solvated electric double layers (insulator/electrolyte interfaces) predicts that the state of complete charge compensation is invariant with respect to solvent permittivities, which is confirmed by a proper analysis of simulation data in the literature.

7.
Small ; 13(14)2017 04.
Article in English | MEDLINE | ID: mdl-28151577

ABSTRACT

Production of hydrogen from photocatalytic water splitting holds promise as an alternative energy source with superiority of cleanliness, environment friendliness, low price, and sustainability. Perfectly constructing the noble-metal-free and stable hybrid structure photocatalyst is quite essential; herein, for the first time the authors aim to use cobalt phosphide as the cocatalyst on titanium oxide to form a novel hybrid structure to enhance the utilization of the photoexcited electrons in redox reactions for improved photocatalytic H2 evolution activity. Thus, the achieved significantly increased photocatalytic H2 -evolution rate on the optimized CoP/TiO2 (8350 µmol h-1 g-1 ) is 11 times higher than that of the pristine TiO2 . Moreover, this work is expected to spur more insight into synthesizing such novel photofunctional systems, achieving high photocatalytic H2 evolution activity and sufficient stability for solar-to-chemical conversion and utilization.

8.
Phys Chem Chem Phys ; 19(6): 4861-4876, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28134360

ABSTRACT

Artifacts arise when the long-ranged electrostatic interaction is inappropriately treated in molecular simulations of electrolytes. When the usual Ewald3D sum method with the tinfoil boundary condition (e3dtf) is used for simulations of an interfacial liquid under an external electric field, a straightforward analysis of the liquid structure often suggests unphysical dielectric properties as a consequence of the inaccurate treatment of the electrostatics. In order to understand the underlying mechanism that leads to this apparent violation of thermodynamics, we now derive a new equation in the weak-field limit that, in a mean field view, accounts for the average effect arising from the difference between e3dtf and the sophisticated Ewald2D sum method (e2d). Numerical simulations of a water system in slab geometry confirm the validity of the weak-field limit equation for a series of parameter setup associated with e3dtf. Moreover, a similar procedure applied to a spherically confined water system suggests that corrections to the seemingly inappropriate treatment of the electrostatics in fact vanish. This cancellation of the boundary effect due to symmetry immediately sheds light on the long-lasting problem of the validity of the ad hoc application of e3dtf for bulk systems. In total, we argue that artifacts arising from e3dtf are often predictable and analytical corrections to the straightforward analysis might be applied to reveal consistent thermodynamic properties in liquid simulations.

9.
Phys Chem Chem Phys ; 19(28): 18514-18518, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28682374

ABSTRACT

This letter attempts to clarify the meaning of three closely related mean-field approximations: random phase approximation (RPA), local molecular field (LMF) approximation, and symmetry-preserving mean-field (SPMF) approximation, and their use of reliability and validity in the field of theory and simulation of liquids when the long-ranged component of the intermolecular interaction plays an important role in determining density fluctuations and correlations. The RPA in the framework of classical density functional theory (DFT) neglects the higher order correlations in the bulk and directly applies the long-ranged part of the potential to correct the pair direct correlation function of the short-ranged system while the LMF approach introduces a nonuniform mimic system under a reconstructed static external potential that accounts for the average effect arising from the long-ranged component of the interaction. Furthermore, the SPMF approximation takes the viewpoint of LMF but instead instantaneously averages the long-ranged component of the potential over the degrees of freedom in the direction with preserved symmetry. The formal connections and the particular differences of the viewpoint among the three approximations are explained and their performances in producing structural properties of liquids are stringently tested using an exactly solvable model. We demonstrate that the RPA treatment often yields uncontrolled poor results for pair distribution functions of the bulk system. On the other hand, the LMF theory produces quite reasonably structural correlations when the pair distribution in the bulk is converted to the singlet particle distribution in the nonuniform system. It turns out that the SPMF approach outperforms the other two at all densities and under extreme conditions where the long-ranged component significantly contributes to the structural correlations.

10.
J Chem Phys ; 147(12): 126101, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28964025

ABSTRACT

Using an example of a mixed discrete-continuum representation of charges under the periodic boundary condition, we show that the exact pairwise form of the Ewald sum, which is well-defined even if the system is non-neutral, provides a natural starting point for deriving unambiguous Coulomb energies that must remove all spurious dependence on the choice of the Ewald screening factor.

11.
J Comput Chem ; 36(6): 376-84, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25487650

ABSTRACT

We comprehensively illustrate a general process of fitting all-atom molecular mechanics force field (FF) parameters based on quantum mechanical calculations and experimental thermodynamic data. For common organic molecules with free dihedral rotations, this FF format is comprised of the usual bond stretching, angle bending, proper and improper dihedral rotation, and 1-4 scaling pair interactions. An extra format of 1-n scaling pair interaction is introduced when a specific intramolecular rotation is strongly hindered. We detail how the preferred order of fitting all intramolecular FF parameters can be determined by systematically generating characteristic configurations. The intermolecular Van der Waals parameters are initially taken from the literature data but adjusted to obtain a better agreement between the molecular dynamics (MD) simulation results and the experimental observations if necessary. By randomly choosing the molecular configurations from MD simulation and comparing their energies computed from FF parameters and quantum mechanics, the FF parameters can be verified self-consistently. Using an example of a platform chemical 3-hydroxypropionic acid, we detail the comparison between the new fitting parameters and the existing FF parameters. In particular, the introduced systematic approach has been applied to obtain the dihedral angle potential and 1-n scaling pair interaction parameters for 48 organic molecules with different functionality. We suggest that this procedure might be used to obtain better dihedral and 1-n interaction potentials when they are not available in the current widely used FF.

12.
Article in English | MEDLINE | ID: mdl-38064323

ABSTRACT

Cardiac dysfunction is a severe complication that is associated with an increased risk of mortality in multiple diseases. Cardioprotection solution that has been researched is the electrical stimulation of the vagus nerve to exert cardio protection. This method has been shown to reduce the systemic inflammatory response and maintain the immune homeostasis of the heart. However, the invasive procedure of electrode implantation poses a risk of nerve or fiber damage. Here, we propose transthoracic ultrasound stimulation (US) of the vagus nerve to alleviate cardiac dysfunction caused by lipopolysaccharide (LPS). We developed a noninvasive transthoracic US system and exposed anesthetized mice to ultrasound protocol or sham stimulation 24 h after LPS treatment. Results showed that daily heart targeting US for 4 days significantly increased left ventricular systolic function ( p = 0.01) and improved ejection fraction ( p = 0.03) and shortening fraction ( p = 0.04). Furthermore, US significantly reduced inflammation cytokines, including IL-6 ( p = 0.03) and IL- 1ß ( p = 0.04). In addition, cervical vagotomy abrogated the effect of US, suggesting the involvement of the vagus nerve's anti-inflammatory effect. Finally, the same ultrasound treatment but for a longer period (14 days) also significantly increased cardiac function in naturally aged mice. Collectively, these findings suggest the potential of transthoracic US as a possible novel noninvasive approach in the context of cardiac dysfunction with reduced systolic function and provide new targets for rehabilitation of peripheral organ function.


Subject(s)
Heart Diseases , Lipopolysaccharides , Mice , Animals , Vagus Nerve , Heart/diagnostic imaging , Cytokines
13.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687495

ABSTRACT

Two-dimensional nanomaterials (2D NMs), consisting of atoms or a near-atomic thickness with infinite transverse dimensions, possess unique structures, excellent physical properties, and tunable surface chemistry. They exhibit significant potential for development in the fields of sensing, renewable energy, and catalysis. This paper presents a comprehensive overview of the latest research findings on the preparation and application of 2D NMs. First, the article introduces the common synthesis methods of 2D NMs from both "top-down" and "bottom-up" perspectives, including mechanical exfoliation, ultrasonic-assisted liquid-phase exfoliation, ion intercalation, chemical vapor deposition, and hydrothermal techniques. In terms of the applications of 2D NMs, this study focuses on their potential in gas sensing, lithium-ion batteries, photodetection, electromagnetic wave absorption, photocatalysis, and electrocatalysis. Additionally, based on existing research, the article looks forward to the future development trends and possible challenges of 2D NMs. The significance of this work lies in its systematic summary of the recent advancements in the preparation methods and applications of 2D NMs.

14.
J Colloid Interface Sci ; 648: 278-286, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37301152

ABSTRACT

The process of electrocatalytic water splitting for hydrogen generation is significantly limited by sluggish kinetics of the anodic oxygen evolution reaction (OER). The efficiency of H2 electrocatalytic generation can be improved by reducing the anode potential or substituting urea oxidation reaction (UOR) for oxygen evolution process. Here, we report a robust catalyst based on Co2P/NiMoO4 heterojunction arrays supported on nickel foam (NF) for water splitting and urea oxidation. In the hydrogen evolution reaction in alkaline media, the optimized catalyst Co2P/NiMoO4/NF displayed a lower overpotential (169 mV) at a large current density (150 mA cm-2) compared to 20 wt% Pt/C/NF (295 mV@150 mA cm-2). In the OER and UOR, the potentials were as low as 1.45 and 1.34 V. These values surpass (for OER), or compare favorably to (for UOR), the most advanced commercial catalyst RuO2/NF (at 10 mA cm-2). This outstanding performance was attributed to the addition of Co2P, which has a significant effect on the chemical environment and electron structure of NiMoO4, while increasing the number of active sites and promoting charge transfer across the Co2P/NiMoO4 interface. This work proposes a high-performance and cost-effective electrocatalyst for water splitting and urea oxidation.

15.
J Colloid Interface Sci ; 650(Pt B): 1319-1326, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37478749

ABSTRACT

Molecularly imprinted photoelectrochemical sensors (MIPES) have gained significant attention in the detection field due to their high selectivity and accuracy. However, their sensitivity still needs improvement. Here we developed a TiO2-based MIPES (TiO2 NRs/NiOOH/rMIP) to detect ciprofloxacin (CIP). We identified the photoactive sites of TiO2 by NiOOH photo-deposition and anchored the imprinted sites on the photoactive sites by complexation between CIP and NiOOH. By regulating the imprinted sites, the photocurrent difference before and after the addition of CIP increases and the detection sensitivity of CIP is improved. Moreover, a PN heterojunction is formed between TiO2 and NiOOH, which enables rapid transfer of photoexcited holes and electrons to different semiconductors under the built-in electric field. This leads to improved photoactivity of TiO2 and further increases the sensitivity of MIPES. Compared with sensors prepared by the traditional electro-polymerization CIP and Molecularly imprinted polymers (TiO2 NRs/NiOOH/eMIP), TiO2 NRs/NiOOH/rMIP as constructed in this work displays higher sensitivity, wider linear detection range, and lower limit of detection (LOD). Additionally, TiO2 NRs/NiOOH/rMIP shows good selectivity, stability, and recovery rate, and has a promising application prospect in the actual detection of antibiotics.

16.
Chem Commun (Camb) ; 59(92): 13690-13702, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37902025

ABSTRACT

Phenolic compounds are ubiquitous in nature because of their unique physical and chemical properties and wide applications, which have received extensive research attention. Phenolic compounds represented by tannic acid (TA) play an important role at the nanoscale. TA with a polyphenol hydroxyl structure can chemically react with organic or inorganic materials, among which metal-phenolic networks (MPNs) formed by coordination with metal ions and polyphenol derivatives formed by interactions with organic matter, exhibit specific properties and functions, and play key roles in photo(electro)catalysis. In this paper, we first introduce the fundamental properties of TA, then summarize the factors influencing the properties of MPNs and structural transformation of polyphenol-derived materials. Subsequently, the functions of MPNs and polyphenol derivatives in photo(electro)catalysis reactions are summarized, encompassing improving interfacial charge carrier separation, accelerating surface reaction kinetics, and enhancing light absorption. Finally, this article provides a comprehensive overview of the challenges and outlook associated with MPNs. Additionally, it presents novel insights into their stability, mechanistic analysis, synthesis, and applications in photo(electro)catalysis.

17.
Zhen Ci Yan Jiu ; 48(7): 686-93, 2023 Jul 25.
Article in Zh | MEDLINE | ID: mdl-37518963

ABSTRACT

OBJECTIVE: To observe the meridian-acupoint reactions of foot three yin meridians in primary dysmenorrhea(PD) and secondary dysmenorrhea(SD) patients, so as to summarize the rules of meridian-acupoint reaction and acupoints selection. METHODS: Thirty-five patients with PD (PD group), 34 patients with SD (SD group) and 35 healthy subjects (healthy group) were recruited. The compression method was used to examine the lower leg segment of the foot three yin meridians. Positive reactions(palpable skin changes, including cords, nodules, depressions) and tenderness of meridians and acupoints were recorded. The visual analogue scale (VAS) was used to evaluate the tenderness severity of acupoints. RESULTS: Compared with the healthy group, the probability of positive reactions and tenderness in foot three yin meridians were higher in PD and SD groups (P<0.01,P<0.05). Compared with the PD group, the probability of positive reactions in Spleen and Liver Meridians were higher in the SD group, with higher probability of tenderness in Liver Meridian(P<0.05). The probability of positive reactions and tenderness in the Spleen Meridian of PD and SD groups was significantly higher than that in the Kidney Meridian (P<0.01), while the probability of tenderness in the Spleen Meridian of the PD group was significantly higher than that in the Liver Meridian (P<0.05). Positive reactions and tenderness were concentrated at Yinlingquan (SP9), Diji (SP8) and Sanyinjiao (SP6) of Spleen Meridian and Xiguan (LR7) and Ligou (LR5) in Liver Meridian of PD and SD groups. In comparison with the PD group, the probability of positive reactions, tenderness and VAS score of SP8 and LR5 of the SD group were higher (P<0.05, P<0.01). CONCLUSION: The positive reaction occurs most frequently in the Spleen Meridian, followed by the Liver Meridian, and least frequently in the Kidney Meridian. The acupoints with positive reaction are different between PD and SD, which suggests that the Spleen Meridian acupoints should be the main acupoints when treating the two kinds of dysmenorrhea, and acupoints should also be selected according to the meridian and acupoint examination results.


Subject(s)
Acupuncture Therapy , Meridians , Female , Humans , Acupuncture Points , Dysmenorrhea/therapy , Lower Extremity , Leg
18.
ACS Appl Mater Interfaces ; 15(9): 11621-11630, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36815776

ABSTRACT

Layered double hydroxides (LDHs) are promising electrocatalytic materials for the oxygen evolution reaction (OER) due to their tunable composition and low cost. Here, we construct ultrathin Al-incorporated Co LDH nanosheets on carbon cloth (CC) by a facile hydrothermal strategy. Compared to Co LDH/CC, the optimized Co2Al1 LDH/CC displays significantly improved OER performance, characterized by low overpotentials of only 171 and 200 mV to reach current densities of 10 mA cm-2 in alkaline and neutral media, respectively, as well as good stability over an extended period. The introduced Al3+ and CC support play a synergistic role in steering the morphology of Co2Al1 LDH/CC while also increasing the electrochemical active sites. X-ray absorption fine spectra (XAFS) analyses uncover the critical role of Al in regulating the coordination environment of Co atoms, with evidence affording highly active Co oxidation states. Moreover, density functional theory (DFT) calculations confirmed that the Al3+ incorporated into Co LDH/CC can efficaciously modulate the electronic density of states of the d-band center of Co atoms, optimize the Gibbs free energies of intermediates toward OER, and thus accelerate the O2 evolution rate.

19.
J Colloid Interface Sci ; 649: 223-233, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348342

ABSTRACT

Lithium-sulfur batteries (LSBs) are among the most promising next-generation high energy density energy-storage systems. However, practical application has been hindered by fundamental problems, especially shuttling by the higher-order polysulfides (PSs) and slow redox kinetics. Herein, a novel electrolyte-based strategy is proposed by adding an ultrasmall amount of the low-cost and commercially available cationic antistatic agent octadecyl dimethyl hydroxyethyl quaternary ammonium nitrate (SN) into a routine ether electrolyte. Due to the strong cation-anion interaction and bridge-bonding with SN, rapid flocculation of the soluble polysulfide intermediates into solid-state polysulfide-SN sediments is found, which significantly inhibited the adverse shuttling effect. Moreover, a catalytic effect was also demonstrated for conversion of the polysulfide-SN intermediates, which enhanced the redox kinetics of Li-S batteries. Encouragingly, for cells with only 0.1 % added SN, an initial specific capacity of 783.6 mAh/g and a retained specific capacity of 565.7 mAh/g were found at 2C after 200 cycles, which corresponded to an ultralow capacity decay rate of only 0.014 % per cycle. This work may provide a simple and promising regulation strategy for preparing highly stable Li-S batteries.

20.
ACS Appl Mater Interfaces ; 14(33): 37716-37726, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35971946

ABSTRACT

In this study, chlorophyll-copper (ChlCu)-modified ZnO nanorods (ChlCu/ZnO) were prepared, and then sodium ethylenediamine tetraacetate (EDTA) was used to remove part of Cu2+ in ChlCu, leaving cavities with specific adsorption activity for Cu2+ in E-ChlCu/ZnO. Appropriate EDTA treatment improved the photoactivity of ChlCu/ZnO and the adsorption selectivity to Cu2+. However, excessive EDTA treatment might lead to the collapse of the ChlCu structure, resulting in a decrease in photoactivity. The E-ChlCu/ZnO sample with 8 h of ChlCu treatment and 2 h of EDTA treatment showed optimal photoactivity. The as-prepared E-ChlCu/ZnO exhibited activity as a light-activated nanozyme, which could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to blue under illumination, but when Cu2+ was present in the solution, this colorimetric reaction was inhibited; therefore, E-ChlCu/ZnO could be used for colorimetric detection of Cu2+. Because of the existence of specific cavities, E-ChlCu/ZnO showed excellent detection selectivity, a wide linear detection range (0-1 and 1-15 µM), and a low detection limit (0.024 µM) in the colorimetric detection of Cu2+.

SELECTION OF CITATIONS
SEARCH DETAIL