ABSTRACT
A 11-year old female patient with severe thalassemia, receipt a lentivirus-based cell and gene therapy (CGT) therapy in Shenzhen Children′s Hosptial on July 27th, 2021. At the two follow-up visits after discharge, patient were continuously tested positive for HIV screening through HIV Ag/Ab Combo assay (chemiluminescence Immunoassay), and the viral load results of HIV-1 nucleic acid testing (NAT) were both>5 000 copies/ml. The patient can be diagnosed with HIV infection according to the National Guideline for Detection of HIV/AIDS(2020 Revised Edition). The thorough investigation findings and supplementary experiment results indicated that the false-positive HIV-1 NAT results was caused by cross-reactivity between the target sites detected by conventional HIV-1 NAT reagents and the lentiviral vectors fragments integrated into the genome of patient′s hematopoietic stem/progenitor cells. In conclusion, it is important for laboratories to select appropriate HIV-1 NAT testing platforms which won′t cause cross-reactivity for the testing of samples from patients who have been treated with HIV-derived vectors. It is also recommended to design and develop NAT testing platforms with multiple target regions labeled by different fluorescents for HIV NAT supplementation experiment to reduce the risk of false-positive diagnoses of HIV infection.
ABSTRACT
Accurately predicting the risk of mediastinal lymph node metastasis before surgery is of great significance for tumor staging, treatment plan decision, and prognosis evaluation in patients with non-small cell lung cancer(NSCLC). Traditional imaging methods such as CT, MRI and PET/CT are currently the most commonly used clinical methods in clinical evaluation of lymph node status. However, it is subjective to judge lymph node metastasis only by the change of image morphological characteristics, and inflammatory lymphadenopathy will also lead to a high false positive rate. The clinicopathological characteristics obtained by analyzing the clinical data of patients with NSCLC can improve the accuracy of lymph node metastasis prediction to a certain extent. The clinical prediction model based on medical images combined with the clinical characteristics of patients can provide more intuitive and rational information for doctors and patients, but the performance and applicability of the model will inevitably decrease due to changes in disease risk factors and treatment measures. In recent years, with the significant improvement of image analysis technology and computing ability, radiomics models based on medical images can deeply dig into the data in radiological images for quantitative analysis, providing new ideas for predicting mediastinal lymph node metastasis in NSCLC patients, which has attracted extensive attention at home and abroad. This article reviews the progress and makes prospects of the above methods in the prediction of mediastinal lymph node metastasis in NSCLC.
ABSTRACT
In order to develop potent antidiabetic agents that have inhibitory effect to a-glucosidase, twelve β-acetamido ketone derivatives such as N-{[(substituted-4-oxo-thiochroman-3-yl)phenyl]-methyl}acetamide are designed and synthesized through one-pot Dakin-West reaction. Their chemical structures are confirmed by 1H NMR, 13C NMR, IR and HR-MS. In vitro α-glucosidase inhibition assays of compounds 4a-41 were carried out using glucose oxidase method. The result indicated that most of them possess inhibitory activity in vitro. Compound 4k showed the most potent inhibitory activity with 87.3% inhibition of α-glucosidase at the concentration of 5.39 mmol x L(-1). The structure-activity relationship of these β-acetamido ketone derivatives was discussed preliminarily. Moreover, the molecular docking method was used to study the interaction mode of compound 4k and α-glucosidase. Our results will be helpful for designing of α-glucosidase inhibitors in the future.
ABSTRACT
SummaryO_ST_ABSBackgroundC_ST_ABSManaging discharged COVID-19 (DC) patients with recurrent positive (RP) SARS-CoV-2 RNA test results is challenging. We aimed to comprehensively characterize the viral RNA level and serum antibody responses in RP-DC patients and evaluate their viral transmission risk. MethodsA population-based observational cohort study was performed on 479 DC patients discharged from February 1 to May 5, 2020 in Shenzhen, China. We conducted RT-qPCR, antibody assays, neutralisation assays, virus isolation, whole genome sequencing (WGS), and epidemiological investigation of close contacts. FindingsOf 479 DC patients, the 93 (19%) RP individuals, including 36 with multiple RP results, were characterised by young age (median age: 34 years, 95% confidence interval [CI]: 29-38 years). The median discharge-to-RP length was 8 days (95% CI: 7-14 days; maximum: 90 days). After readmission, RP-DC patients exhibited mild (28%) or absent (72%) symptoms, with no disease progression. The viral RNA level in RP-DC patients ranged from 1{middle dot}9-5{middle dot}7 log10 copies/mL (median: 3{middle dot}2, 95% CI: 3{middle dot}1-3{middle dot}5). At RP detection, the IgM, IgG, IgA, total antibody, and neutralising antibody (NAb) seropositivity rates in RP-DC patients were 38% (18/48), 98% (47/48), 63% (30/48), 100% (48/48), and 91% (39/43), respectively. Regarding antibody levels, there was no significant difference between RP-DC and non-RP-DC patients. The antibody level remained constant in RP-DC patients pre- and post-RP detection. Virus isolation of nine representative specimens returned negative results. WGS of six specimens yielded only genomic fragments. No clinical symptoms were exhibited by 96 close contacts of 23 RP-DC patients; their viral RNA (96/96) and antibody (20/20) test results were negative. After full recovery, 60% of patients (n=162, 78 no longer RP RP-DC and 84 non-RP-DC) had NAb titres of [≥]1:32. InterpretationRP may occur in DC patients following intermittent and non-stable excretion of low viral RNA levels. RP-DC patients pose a low risk of transmitting SARS-CoV-2. An NAb titre of [≥] 1:32 may provide a reference indicator for evaluating humoral responses in COVID-19 vaccine clinical trials. FundingSanming Project of Medicine in Shenzhen, China National Science and Technology Major Projects Foundation, Special Foundation of Science and Technology Innovation Strategy of Guangdong Province of China, and Shenzhen Committee of Scientific and Technical Innovation grants.