ABSTRACT
Four chair-like hexanuclear Fe-Ln complexes containing mixed organic ligands, namely, [Fe4Ln2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]·xCH3CN·yH2O (Ln = GdIII (1, x = 1, y = 0), DyIII (2, x = 1, y = 1), HoIII (3, x = 0, y = 2), and ErIII (4, x = 1, y = 3); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone and pdmH2 = 2,6-pyridinedimethanol) have been obtained by employing di-2-pyridyl ketone and 2,6-pyridinedimethanol reacting with FeCl3 and Ln(NO3)3 in MeCN. The structures of 1-4 are similar to each other except for the number of lattice solvent molecules. Four FeIII and two LnIII in these complexes comprise a chair-like core with the "body" constructed by four FeIII ions and the "end" constructed by two LnIII ions. Among the four compounds, 2 shows field-induced single molecule magnet behavior as revealed by ac magnetic susceptibility studies, with the effective energy barrier and the pre-exponential factor of 22.07 K and 8.44 × 10-7 s, respectively. Ab initio calculations indicated that, among 2_Dy, 3_Ho and 4_Er fragments, the energy gap between the lowest two spin-orbit states for 2_Dy is the largest, while the tunneling gap for 2 is the smallest. These might be the reasons for complex 2 exhibiting SMM behavior. Additionally, the orientations of the magnetic anisotropy of DyIII in 2 were obtained by electrostatic calculations and ab initio calculations, both indicating that the directions of the main magnetic axis of Dy1 ions are almost aligned along Dy1-O5 (O5 from the pdm2- ligand).
ABSTRACT
Four tetranuclear 3d-4f complexes, namely [Fe2Ln2(L)2(teaH)2(Cl)2](NO3)2·4CH3CN (H2L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine, teaH3 = triethanolamine, Ln = Dy for 1 and Ln = Gd for 1') and [Co2Ln2(L)2(pdm)2(CH3COO)2(CH3OH)2](NO3)2·xCH3OH·yH2O (pdmH2 = 2,6-pyridinedimethanol, Ln = Dy, x = 5 and y = 2.5 for 2 and Ln = Gd, x = 6 and y = 1.5 for 2'), have been reported. Two FeIII and two DyIII in 1 formed a zigzag Fe1-Dy1-Dy1a-Fe1a arrangement with a Fe1-Dy1-Dy1a angle of 105.328(3)°. However, in contrast to 1, two CoIII and two DyIII ions in 2 formed a more linear Co1-Dy1-Dy1a-Co1a arrangement with a Co1-Dy1-Dy1a angle of 141.86(2)°. Additionally, two DyIII ions in 1 are eight-coordinated with a triangular dodecahedron geometry, while two DyIII ions in 2 adopt nine-coordination with a muffin geometry. Magnetic studies revealed slow magnetic relaxation behavior for 1, with an energy barrier Ea of 6.9 K. For 2, single molecule magnet behavior was presented under a zero dc field with an effective energy barrier Ueff of 64.0(9) K. Ab initio calculations for 1 and 2 indicate that compared to 2, complex 1 has a larger transversal magnetic moment of its ground Kramers doublets (KD) and a larger value of the tunnelling parameter (Δt) for the exchanged coupled ground state, which may result in poor single molecule magnet behavior for 1.
ABSTRACT
In this work, we report the syntheses, crystal structures and magnetic properties of three novel Zn-Ln mixed metal complexes, namely [Zn4Dy2(L1)2(L2)2(N3)2]Cl2·2H2O (1), [Zn4Tb2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (2), and [Zn4Gd2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (3), in which L12- and L23- were formed from the ligand L [L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine] through in situ reactions. Interestingly, carbon dioxide in air was absorbed in the process of forming carbamate ligand L23-; this can be ascribed to the insertion of CO2 into M-N amide bonds. Moreover, 1 and 2 represent the first series of 3d-4f SMMs containing carbamate ligands by fixation of CO2 in air. Single-crystal X-ray diffraction analyses reveal that the crystal structures of 1 and 2 are anion-dependent, i.e., the apical positions of the two ZnII ions in 1 and 2 are occupied by an N atom of N3- and by Cl-, respectively. However, the topologies of 2 and 3 are similar. Two ZnII ions and one LnIII (Ln = Dy (1), Tb (2) and Gd (3)) form nearly linear trinuclear [Zn2Ln] units which are double-bridged by two L23- ligands. Magnetic studies reveal that two complexes show single molecule magnet behavior under a direct current (dc) field, with effective energy barriers (Ueff) of 30.66(5) K for 1 and 8.87(3) K for 2. Ab initio calculations reveal that the DyIII ions in 1 and the TbIII ions in 2 are axial in nature; however, a difference in the tunnel splitting of 1 and 2 leads to variation in the magnetization blockades of the two complexes. Theoretical calculations also indicate that the directions of the main magnetic axes severely deviate from the coordination atoms of the first spheres of DyIII and TbIII in 1 and 2; thus further results in poor SMM behavior of the two complexes.