Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 117(3): 873-891, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37950600

ABSTRACT

The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.


Subject(s)
Arabidopsis , Oomycetes , Phytophthora , Vitis , Disease Resistance/genetics , Proteins/metabolism , Plant Immunity , Plant Diseases , Vitis/metabolism
2.
Appl Opt ; 61(23): 6905-6914, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36255772

ABSTRACT

Single-pixel imaging (SPI) is a new technology with many applications and prospects. Polarization detection technology can improve the detection and identification ability of the imaging system. A near-infrared polarization SPI lidar system is designed to realize detection and polarization imaging of outdoor long-range targets. The depth, intensity, linear polarization, and polarization degree images of typical remote targets are obtained. The results show that the polarization image contains many details and contour information of the target, and the intensity image contains brightness and reflectivity information. Intensity and polarization information complement each other. The characteristics of intensity and polarization images at different spatial frequencies are analyzed for the first time, to our knowledge, by taking advantage of the Fourier modulation mode. We found that the proportion of high-frequency information in the polarization image is much higher than that of the intensity image. The sampling strategy of collecting only low-frequency components is applicable in intensity imaging but needs further improvement in polarization imaging. The polarization SPI lidar system can enrich the target information acquired, improve imaging contrast, and have significant application value for target detection and identification in complex backgrounds.

3.
Mol Ther Methods Clin Dev ; 26: 52-60, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35755945

ABSTRACT

Clade F adeno-associated virus (AAV) 9 has been utilized as therapeutic gene delivery vector, and it is capable of crossing blood brain barrier (BBB). Recently, an AAV9-based engineering serotype AAVPHP.eB with enhanced BBB crossing ability further expanded clade F AAVs' usages in the murine central nervous system (CNS) gene delivery. In this study, we determined the cryo-electron microscopy (cryo-EM) structures of the AAVPHP.eB and its parental serotype AAV9 in native form or in complex with their essential receptor AAV receptor (AAVR). These structures reveal the molecular details of their AAVR recognition, where the polycystic kidney disease repeat domain 2 (PKD2) of AAVR interacts with AAV9 and AAVPHP.eB virions at the 3-fold protrusions and the raised capsid regions between the 2- and 5-fold axes, termed the 2/5-fold wall. The interacting patterns of AAVR to AAV9 and AAVPHP.eB are similar to what was observed in AAV1/AAV2-AAVR complexes. Moreover, we found that the AAVPHP.eB variable region VIII (VR-VIII) may independently facilitate the new receptor recognition responsible for enhanced CNS transduction. Our study provides insights into the recognition principles of multiple receptors for engineered AAVPHP.eB and parental serotype AAV9, and further reveal the potential molecular basis underlying their different tropisms.

SELECTION OF CITATIONS
SEARCH DETAIL