Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447926

ABSTRACT

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Subject(s)
Diet, Western , Hepatocyte Nuclear Factor 3-gamma , Liver , Mice, Inbred C57BL , Obesity , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Mice , Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Liver/metabolism , Diet, Western/adverse effects , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Bile Acids and Salts/metabolism
2.
Eur Heart J ; 44(24): 2244-2253, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37170610

ABSTRACT

BACKGROUND AND AIMS: Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS: Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION: Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.


Subject(s)
Takotsubo Cardiomyopathy , Animals , Mice , Chromonar , Coronary Circulation/physiology , Echocardiography , Myocardial Ischemia , Myocardium
3.
J Mol Cell Cardiol ; 165: 158-171, 2022 04.
Article in English | MEDLINE | ID: mdl-35074317

ABSTRACT

RATIONALE: Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease. OBJECTIVE: To develop a murine model of coronary collateral growth by repetitive ischemia and investigate whether capillary endothelial cells could contribute to the coronary collateral formation in an adult mouse heart after repetitive ischemia by lineage tracing. METHODS AND RESULTS: A murine model of coronary collateral growth was developed using short episodes of repetitive ischemia. Repetitive ischemia stimulation resulted in robust collateral growth in adult mouse hearts, validated by high-resolution micro-computed tomography. Repetitive ischemia-induced collateral formation compensated ischemia caused by occlusion of the left anterior descending artery. Cardiac function improved during ischemia after repetitive ischemia, suggesting the improvement of coronary blood flow. A capillary-specific Cre driver (Apln-CreER) was used for lineage tracing capillary endothelial cells. ROSA mT/mG reporter mice crossed with the Apln-CreER transgene mice underwent a 17 days' repetitive ischemia protocol for coronary collateral growth. Two-photon and confocal microscopy imaging of heart slices revealed repetitive ischemia-induced coronary collateral growth initiated from sprouting Apelin+ endothelial cells. Newly formed capillaries in the collateral-dependent zone expanded in diameter upon repetitive ischemia stimulation and arterialized with smooth muscle cell recruitment, forming mature coronary arteries. Notably, pre-existing coronary arteries and arterioles were not Apelin+, and all Apelin+ collaterals arose from sprouting capillaries. Cxcr4, Vegfr2, Jag1, Mcp1, and Hif1⍺ mRNA levels in the repetitive ischemia-induced hearts were also upregulated at the early stage of coronary collateral growth, suggesting angiogenic signaling pathways are activated for coronary collaterals formation during repetitive ischemia. CONCLUSIONS: We developed a murine model of coronary collateral growth induced by repetitive ischemia. Our lineage tracing study shows that sprouting endothelial cells contribute to coronary collateral growth in adult mouse hearts. For the first time, sprouting angiogenesis is shown to give rise to mature coronary arteries in response to repetitive ischemia in the adult mouse hearts.


Subject(s)
Endothelial Cells , Myocardial Ischemia , Animals , Apelin/metabolism , Collateral Circulation/physiology , Coronary Vessels/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Ischemia/metabolism , Mice , Myocardial Ischemia/metabolism , Neovascularization, Physiologic/physiology , X-Ray Microtomography
4.
Basic Res Cardiol ; 117(1): 3, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039940

ABSTRACT

Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.


Subject(s)
Metabolic Syndrome , Vasodilation , Acetylcholine/metabolism , Acetylcholine/pharmacology , Animals , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular , Metabolic Syndrome/metabolism , Mitochondria/metabolism , Rats , Rats, Zucker
5.
Basic Res Cardiol ; 117(1): 2, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35024970

ABSTRACT

Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Experimental , MicroRNAs , Animals , Coronary Artery Disease/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Hydrogen Peroxide/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , RNA, Messenger/metabolism , Superoxides/metabolism , Vasodilation/physiology
6.
Hepatology ; 73(6): 2251-2265, 2021 06.
Article in English | MEDLINE | ID: mdl-33098092

ABSTRACT

BACKGROUND AND AIMS: Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS: Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS: The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.


Subject(s)
Bile Acids and Salts/metabolism , Diet, High-Fat , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Tumor Suppressor Protein p53/metabolism , Animals , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Cholesterol 7-alpha-Hydroxylase/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/pathology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction , Steroid 12-alpha-Hydroxylase/metabolism , Triglycerides/blood , Tumor Suppressor Protein p53/genetics
7.
Angiogenesis ; 24(3): 647-656, 2021 08.
Article in English | MEDLINE | ID: mdl-33656628

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) is a ubiquitously expressed polymodally activated ion channel. TRPV4 has been implicated in tumor progression; however, the cell-specific role of TRPV4 in tumor growth, angiogenesis, and metastasis is unknown. Here, we generated endothelial-specific TRPV4 knockout (TRPV4ECKO) mice by crossing TRPV4lox/lox mice with Tie2-Cre mice. Tumor growth and metastasis were significantly increased in a syngeneic Lewis lung carcinoma tumor model of TRPV4ECKO mice compared to TRPV4lox/lox mice. Multiphoton microscopy, dextran leakage, and immunohistochemical analysis revealed increased tumor angiogenesis and metastasis that were correlated with aberrant leaky vessels (increased width and reduced pericyte and VE-cadherin coverage). Mechanistically, increases in VEGFR2, p-ERK, and MMP-9 expression and DQ gelatinase activity were observed in the TRPV4ECKO mouse tumors. Our results demonstrated that endothelial TRPV4 is a critical modulator of vascular integrity and tumor angiogenesis and that deletion of TRPV4 promotes tumor angiogenesis, growth, and metastasis.


Subject(s)
Carcinoma, Lewis Lung/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/metabolism , TRPV Cation Channels/metabolism , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Mice , Mice, Knockout , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , TRPV Cation Channels/genetics
8.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G166-G174, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33325808

ABSTRACT

Human carboxylesterase 2 (CES2) has triacylglycerol hydrolase (TGH) activities and plays an important role in lipolysis. In this study, we aim to determine the role of human CES2 in the progression or reversal of steatohepatitis in diet-induced or genetically obese mice. High-fat/high-cholesterol/high-fructose (HFCF) diet-fed C57BL/6 mice or db/db mice were intravenously injected with an adeno-associated virus expressing human CES2 under the control of an albumin promoter. Human CES2 protected against HFCF diet-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice and reversed steatohepatitis in db/db mice. Human CES2 also improved glucose tolerance and insulin sensitivity. Mechanistically, human CES2 reduced hepatic triglyceride (T) and free fatty acid (FFA) levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis via suppression of sterol regulatory element-binding protein 1. Furthermore, human CES2 overexpression improved mitochondrial respiration and glycolytic function, and inhibited gluconeogenesis, lipid peroxidation, apoptosis, and inflammation. Our data suggest that hepatocyte-specific expression of human CES2 prevents and reverses steatohepatitis. Targeting hepatic CES2 may be an attractive strategy for treatment of NAFLD.NEW & NOTEWORTHY Human CES2 attenuates high-fat/cholesterol/fructose diet-induced steatohepatitis and reverses steatohepatitis in db/db mice. Mechanistically, human CES2 induces lipolysis, fatty acid and glucose oxidation, and inhibits hepatic glucose production, inflammation, lipid oxidation, and apoptosis. Our data suggest that human CES2 may be targeted for treatment of non-alcoholic steatohepatitis (NASH).


Subject(s)
Carboxylesterase/metabolism , Hepatocytes/enzymology , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/therapy , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Animals , Apoptosis/physiology , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Blood Glucose , Carboxylesterase/genetics , Diet/adverse effects , Hydroxyproline/blood , Hydroxyproline/metabolism , Lipid Metabolism , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Obesity/chemically induced , Reactive Oxygen Species/metabolism
9.
Mol Ther ; 28(1): 202-216, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31604677

ABSTRACT

Macrophages play a crucial role in the pathogenesis of atherosclerosis, but the molecular mechanisms remain poorly understood. Here we show that microRNA-34a (miR-34a) is a key regulator of macrophage cholesterol efflux and reverse cholesterol transport by modulating ATP-binding cassette transporters ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1). miR-34a also regulates M1 and M2 macrophage polarization via liver X receptor α. Furthermore, global loss of miR-34a reduces intestinal cholesterol or fat absorption by inhibiting cytochrome P450 enzymes CYP7A1 and sterol 12α-hydroxylase (CYP8B1). Consistent with these findings, macrophage-selective or global ablation of miR-34a markedly inhibits the development of atherosclerosis. Finally, therapeutic inhibition of miR-34a promotes atherosclerosis regression and reverses diet-induced metabolic disorders. Our studies outline a central role of miR-34a in regulating macrophage cholesterol efflux, inflammation, and atherosclerosis, suggesting that miR-34a is a promising target for treatment of cardiometabolic diseases.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Cell Polarity/genetics , Disease Models, Animal , Hep G2 Cells , Humans , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , MicroRNAs/genetics , RAW 264.7 Cells , THP-1 Cells , Transfection
10.
Arterioscler Thromb Vasc Biol ; 39(8): 1574-1587, 2019 08.
Article in English | MEDLINE | ID: mdl-31291759

ABSTRACT

OBJECTIVE: To determine the role of hepatic FOXA3 (forkhead box A3) in lipid metabolism and atherosclerosis. Approach and Results: Hepatic FOXA3 expression was reduced in diabetic or high fat diet-fed mice or patients with nonalcoholic steatohepatitis. We then used adenoviruses to overexpress or knock down hepatic FOXA3 expression. Overexpression of FOXA3 in the liver increased hepatic ApoA-I (apolipoprotein A-I) expression, plasma HDL-C (high-density lipoprotein cholesterol) level, macrophage cholesterol efflux, and macrophage reverse cholesterol transport. In contrast, knockdown of hepatic FOXA3 expression had opposite effects. We further showed that FOXA3 directly bound to the promoter of the Apoa1 gene to regulate its transcription. Finally, AAV8 (adeno-associated virus serotype 8)-mediated overexpression of human FOXA3 in the hepatocytes of Apoe-/- (apolipoprotein E-deficient) mice raised plasma HDL-C levels and significantly reduced atherosclerotic lesions. CONCLUSIONS: Hepatocyte FOXA3 protects against atherosclerosis by inducing ApoA-I and macrophage reverse cholesterol transport.


Subject(s)
Apolipoprotein A-I/blood , Atherosclerosis/etiology , Cholesterol/metabolism , Hepatocyte Nuclear Factor 3-gamma/physiology , Liver/metabolism , Animals , Biological Transport , Cholesterol, HDL/blood , Female , Hep G2 Cells , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL
11.
Am J Physiol Heart Circ Physiol ; 316(1): H1-H9, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30379567

ABSTRACT

Ischemic heart diseases (IHD) cause millions of deaths around the world annually. While surgical and pharmacological interventions are commonly used to treat patients with IHD, their efficacy varies from patient to patient and is limited by the severity of the disease. One promising, at least theoretically, approach for treating IHD is induction of coronary collateral growth (CCG). Coronary collaterals are arteriole-to-arteriole anastomoses that can undergo expansion and remodeling in the setting of coronary disease when the disease elicits myocardial ischemia and creates a pressure difference across the collateral vessel that creates unidirectional flow. Well-developed collaterals can restore blood flow in the ischemic area of the myocardium and protect the myocardium at risk. Moreover, such collaterals are correlated to reduced mortality and infarct size and better cardiac function during occlusion of coronary arteries. Therefore, understanding the process of CCG is highly important as a potentially viable treatment of IHD. While there are several excellent review articles on this topic, this review will provide a unified overview of the various aspects related to CCG as well as an update of the advancements in the field. We also call for more detailed studies with an interdisciplinary approach to advance our knowledge of CCG. In this review, we will describe growth of coronary collaterals, the various factors that contribute to CCG, animal models used to study CCG, and the cardioprotective effects of coronary collaterals during ischemia. We will also discuss the impairment of CCG in metabolic syndrome and the therapeutic potentials of CCG in IHD.


Subject(s)
Collateral Circulation , Coronary Circulation , Myocardial Ischemia/physiopathology , Neovascularization, Physiologic , Animals , Coronary Vessels/metabolism , Coronary Vessels/physiology , Coronary Vessels/physiopathology , Humans , Microvessels/metabolism , Microvessels/physiology , Microvessels/physiopathology , Myocardial Ischemia/therapy
12.
Am J Physiol Heart Circ Physiol ; 317(4): H765-H776, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31418583

ABSTRACT

Induced vascular progenitor cells (iVPCs) were created as an ideal cell type for regenerative medicine and have been reported to positively promote collateral blood flow and improve cardiac function in a rat model of myocardial ischemia. Exosomes have emerged as a novel biomedicine that mimics the function of the donor cells. We investigated the angiogenic activity of exosomes from iPVCs (iVPC-Exo) as a cell-free therapeutic approach for ischemia. Exosomes from iVPCs and rat aortic endothelial cells (RAECs) were isolated using a combination of ultrafiltration and size-exclusion chromatography. Nanoparticle tracking analysis revealed that exosome isolates fell within the exosomal diameter (<150 nm). These exosomes contained known markers Alix and TSG101, and their morphology was validated using transmission electron microscopy. When compared with RAECs, iVPCs significantly increased the secretion of exosomes. Cardiac microvascular endothelial cells and aortic ring explants were pretreated with RAEC-Exo or iVPC-Exo, and basal medium was used as a control. iVPC-Exo exerted an in vitro angiogenic effect on the proliferation, tube formation, and migration of endothelial cells and stimulated microvessel sprouting in an ex vivo aortic ring assay. Additionally, iVPC-Exo increased blood perfusion in a hindlimb ischemia model. Proangiogenic proteins (pentraxin-3 and insulin-like growth factor-binding protein-3) and microRNAs (-143-3p, -291b, and -20b-5p) were found to be enriched in iVPC-Exo, which may mediate iVPC-Exo induced vascular growth. Our findings demonstrate that treatment with iVPC-Exo promotes angiogenesis in vitro, ex vivo, and in vivo. Collectively, these findings indicate a novel cell-free approach for therapeutic angiogenesis.NEW & NOTEWORTHY The results of this work demonstrate exosomes as a novel physiological mechanism by which induced vascular progenitor cells exert their angiogenic effect. Moreover, angiogenic cargo of proteins and microRNAs may define the biological contributors in activating endothelial cells to form a new capillary plexus for ischemic vascular diseases.


Subject(s)
Endothelial Progenitor Cells/transplantation , Exosomes/transplantation , Induced Pluripotent Stem Cells/transplantation , Ischemia/surgery , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Angiogenic Proteins/metabolism , Animals , Cell Line , Cell Movement , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Endothelial Progenitor Cells/metabolism , Exosomes/metabolism , Hindlimb , Induced Pluripotent Stem Cells/metabolism , Ischemia/metabolism , Ischemia/physiopathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley , Recovery of Function , Regional Blood Flow , Signal Transduction
13.
Microcirculation ; 24(4)2017 05.
Article in English | MEDLINE | ID: mdl-28504408

ABSTRACT

The connection between metabolism and flow in the heart, metabolic dilation, is essential for cardiac function. We recently found redox-sensitive Kv1.5 channels play a role in coronary metabolic dilation; however, more than one ion channel likely plays a role in this process as animals null for these channels still showed limited coronary metabolic dilation. Accordingly, we examined the role of another Kv1 family channel, the energetically linked Kv1.3 channel, in coronary metabolic dilation. We measured myocardial blood flow (contrast echocardiography) during norepinephrine-induced increases in cardiac work (heart rate x mean arterial pressure) in WT, WT mice given correolide (preferential Kv1.3 antagonist), and Kv1.3-null mice (Kv1.3-/- ). We also measured relaxation of isolated small arteries mounted in a myograph. During increased cardiac work, myocardial blood flow was attenuated in Kv1.3-/- and in correolide-treated mice. In isolated vessels from Kv1.3-/- mice, relaxation to H2 O2 was impaired (vs WT), but responses to adenosine and acetylcholine were equivalent to WT. Correolide reduced dilation to adenosine and acetylcholine in WT and Kv1.3-/- , but had no effect on H2 O2 -dependent dilation in vessels from Kv1.3-/- mice. We conclude that Kv1.3 channels participate in the connection between myocardial blood flow and cardiac metabolism.


Subject(s)
Coronary Circulation , Kv1.3 Potassium Channel/physiology , Myocardium/metabolism , Animals , Coronary Circulation/drug effects , Mice , Potassium Channel Blockers/pharmacology , Regional Blood Flow/drug effects , Triterpenes/pharmacology , Vasodilation/drug effects
14.
Basic Res Cardiol ; 112(4): 41, 2017 07.
Article in English | MEDLINE | ID: mdl-28540527

ABSTRACT

Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.


Subject(s)
Endothelial Progenitor Cells/transplantation , Lactic Acid/chemistry , Muscle, Smooth, Vascular/transplantation , Myocardial Infarction/surgery , Myocardium/pathology , Myocytes, Smooth Muscle/transplantation , Neovascularization, Physiologic , Polyglycolic Acid/chemistry , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Progenitor Cells/metabolism , Fibroblast Growth Factor 2/metabolism , Muscle, Smooth, Vascular/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocytes, Smooth Muscle/metabolism , Paracrine Communication , Phenotype , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Signal Transduction , Time Factors , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling
15.
Hepatology ; 63(6): 1860-74, 2016 06.
Article in English | MEDLINE | ID: mdl-26806650

ABSTRACT

UNLABELLED: Nonalcoholic fatty liver disease (NAFLD) is a common liver disease that ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). So far, the underlying mechanism remains poorly understood. Here, we show that hepatic carboxylesterase 2 (CES2) is markedly reduced in NASH patients, diabetic db/db mice, and high-fat diet (HFD)-fed mice. Restoration of hepatic CES2 expression in db/db or HFD-fed mice markedly ameliorates liver steatosis and insulin resistance. In contrast, knockdown of hepatic CES2 causes liver steatosis and damage in chow- or Western diet-fed C57BL/6 mice. Mechanistically, we demonstrate that CES2 has triglyceride hydrolase activity. As a result, gain of hepatic CES2 function increases fatty acid oxidation and inhibits lipogenesis, whereas loss of hepatic CES2 stimulates lipogenesis by inducing endoplasmic reticulum stress. We further show that loss of hepatic CES2 stimulates lipogenesis in a sterol regulatory element-binding protein 1 (SREBP-1)-dependent manner. Finally, we show that hepatocyte nuclear factor 4 alpha (HNF-4α) plays a key role in controlling hepatic CES2 expression in diabetes, obesity, or NASH. CONCLUSION: CES2 plays a protective role in development of NAFLD. Targeting the HNF-4α/CES2 pathway may be useful for treatment of NAFLD. (Hepatology 2016;63:1860-1874).


Subject(s)
Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/etiology , Adiposity , Animals , Carboxylic Ester Hydrolases/genetics , Diabetes Mellitus, Experimental/enzymology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum Stress , Energy Metabolism , Gene Knockdown Techniques , Glucose/metabolism , Glucose Tolerance Test , Homeostasis , Humans , Lipogenesis , Lipolysis , Liver/enzymology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/enzymology , Obesity/etiology , Sterol Regulatory Element Binding Protein 1/metabolism
16.
Hepatology ; 64(4): 1072-85, 2016 10.
Article in English | MEDLINE | ID: mdl-27359351

ABSTRACT

UNLABELLED: Activation of farnesoid X receptor (FXR) markedly attenuates development of atherosclerosis in animal models. However, the underlying mechanism is not well elucidated. Here, we show that the FXR agonist, obeticholic acid (OCA), increases fecal cholesterol excretion and macrophage reverse cholesterol transport (RCT) dependent on activation of hepatic FXR. OCA does not increase biliary cholesterol secretion, but inhibits intestinal cholesterol absorption. OCA markedly inhibits hepatic cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) partly through inducing small heterodimer partner, leading to reduced bile acid pool size and altered bile acid composition, with the α/ß-muricholic acid proportion in bile increased by 2.6-fold and taurocholic acid (TCA) level reduced by 71%. Overexpression of Cyp8b1 or concurrent overexpression of Cyp7a1 and Cyp8b1 normalizes TCA level, bile acid composition, and intestinal cholesterol absorption. CONCLUSION: Activation of FXR inhibits intestinal cholesterol absorption by modulation of bile acid pool size and composition, thus leading to increased RCT. Targeting hepatic FXR and/or bile acids may be useful for boosting RCT and preventing the development of atherosclerosis. (Hepatology 2016;64:1072-1085).


Subject(s)
Bile Acids and Salts/chemistry , Cholesterol/metabolism , Intestinal Absorption , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Biological Transport , Mice , Mice, Inbred C57BL
17.
Circ Res ; 117(7): 612-621, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26224794

ABSTRACT

RATIONALE: In the working heart, coronary blood flow is linked to the production of metabolites, which modulate tone of smooth muscle in a redox-dependent manner. Voltage-gated potassium channels (Kv), which play a role in controlling membrane potential in vascular smooth muscle, have certain members that are redox-sensitive. OBJECTIVE: To determine the role of redox-sensitive Kv1.5 channels in coronary metabolic flow regulation. METHODS AND RESULTS: In mice (wild-type [WT], Kv1.5 null [Kv1.5(-/-)], and Kv1.5(-/-) and WT with inducible, smooth muscle-specific expression of Kv1.5 channels), we measured mean arterial pressure, myocardial blood flow, myocardial tissue oxygen tension, and ejection fraction before and after inducing cardiac stress with norepinephrine. Cardiac work was estimated as the product of mean arterial pressure and heart rate. Isolated arteries were studied to establish whether genetic alterations modified vascular reactivity. Despite higher levels of cardiac work in the Kv1.5(-/-) mice (versus WT mice at baseline and all doses of norepinephrine), myocardial blood flow was lower in Kv1.5(-/-) mice than in WT mice. At high levels of cardiac work, tissue oxygen tension dropped significantly along with ejection fraction. Expression of Kv1.5 channels in smooth muscle in the null background rescued this phenotype of impaired metabolic dilation. In isolated vessels from Kv1.5(-/-) mice, relaxation to H2O2 was impaired, but responses to adenosine and acetylcholine were normal compared with those from WT mice. CONCLUSIONS: Kv1.5 channels in vascular smooth muscle play a critical role in coupling myocardial blood flow to cardiac metabolism. Absence of these channels disassociates metabolism from flow, resulting in cardiac pump dysfunction and tissue hypoxia.


Subject(s)
Coronary Circulation/physiology , Coronary Vessels/metabolism , Kv1.5 Potassium Channel/physiology , Muscle, Smooth, Vascular/metabolism , Vasodilation/physiology , Animals , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
18.
Basic Res Cardiol ; 111(3): 29, 2016 May.
Article in English | MEDLINE | ID: mdl-27040114

ABSTRACT

Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process.


Subject(s)
Coronary Vessels/physiopathology , DNA, Mitochondrial/metabolism , Metabolic Syndrome/physiopathology , Mitochondria/metabolism , Animals , Coronary Vessels/metabolism , DNA Damage/physiology , DNA Fragmentation , Disease Models, Animal , Metabolic Syndrome/metabolism , Oxidative Stress/physiology , Rats , Rats, Zucker , Reactive Oxygen Species/metabolism , Vasodilation/physiology
20.
Basic Res Cardiol ; 110(2): 19, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25725808

ABSTRACT

Ischemic heart disease (IHD) is a leading cause of death worldwide, and regenerative therapies through exogenous stem cell delivery hold promising potential. One limitation of such therapies is the vulnerability of stem cells to the oxidative environment associated with IHD. Accordingly, manipulation of stem cell mitochondrial metabolism may be an effective strategy to improve survival of stem cells under oxidative stress. MitoNEET is a redox-sensitive, mitochondrial target of thiazolidinediones (TZDs), and influences cellular oxidative capacity. Pharmacological targeting of mitoNEET with the novel TZD, mitoNEET Ligand-1 (NL-1), improved cardiac stem cell (CSC) survival compared to vehicle (0.1% DMSO) during in vitro oxidative stress (H2O2). 10 µM NL-1 also reduced CSC maximal oxygen consumption rate (OCR) compared to vehicle. Following treatment with dexamethasone, CSC maximal OCR increased compared to baseline, but NL-1 prevented this effect. Smooth muscle α-actin expression increased significantly in CSC following differentiation compared to baseline, irrespective of NL-1 treatment. When CSCs were treated with glucose oxidase for 7 days, NL-1 significantly improved cell survival compared to vehicle (trypan blue exclusion). NL-1 treatment of cells isolated from mitoNEET knockout mice did not increase CSC survival with H2O2 treatment. Following intramyocardial injection of CSCs into Zucker obese fatty rats, NL-1 significantly improved CSC survival after 24 h, but not after 10 days. These data suggest that pharmacological targeting of mitoNEET with TZDs may acutely protect stem cells following transplantation into an oxidative environment. Continued treatment or manipulation of mitochondrial metabolism may be necessary to produce long-term benefits related to stem cell therapies.


Subject(s)
Myocytes, Cardiac/drug effects , Oxidative Stress/physiology , Stem Cells/drug effects , Thiazolidinediones/pharmacology , Animals , Cell Differentiation/drug effects , Flow Cytometry , Male , Mice , Mice, Knockout , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/cytology , Oxidative Stress/drug effects , Rats , Rats, Zucker , Real-Time Polymerase Chain Reaction , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL