Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Microbiol Immunol ; 66(4): 157-165, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34914844

ABSTRACT

Bacillus cereus is an opportunistic pathogen that often causes severe infections such as bacteremia, with sphingomyelinase (SMase) being a crucial virulence factor. Although many strains of B. cereus carry the SMase gene, they are classified as SMase-producing and nonproducing strains. The reason for different SMase production among B. cereus strains remains unknown. In this study, we investigated the relationship between SMase and the PlcR transcriptional regulation system to clarify the mechanism leading to varied SMase production among B. cereus strains. We analyzed the sequence of the PlcR box, which is a transcriptional regulator-binding site, located at the promoter region of SMase and phosphatidylcholine-specific phospholipase C. Based on differences in the PlcR box sequences, we classified the B. cereus strains into three groups (I, II, and III). SMase expression and activity were hardly detected in Group III strains. In Group I strains, SMase activity and its expression were maximal at the onset of the stationary phase and decreased during the stationary phase, whereas those were maintained during the stationary phase in Group II stains. On injection of B. cereus strains into mice or incubation with macrophages for phagocytosis assay, the SMase-producing Group I and II strains showed higher pathogenicity than Group III strains. These findings suggest that PlcR box sequence in B. cereus affects the production of SMase, which may provide important clinical information for the detection of highly pathogenic B. cereus strains.


Subject(s)
Bacillus cereus , Sphingomyelin Phosphodiesterase , Animals , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Mice , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Trans-Activators
2.
Biol Pharm Bull ; 43(2): 250-253, 2020.
Article in English | MEDLINE | ID: mdl-32009113

ABSTRACT

Bacillus cereus is well known as a causative agent of food poisoning but it also causes bacteremia and endophthalmitis in nosocomial infections. However, as an environmental bacterium that lives in soil, it is often treated as simple contamination by hospitals. In recent years, highly pathogenic B. cereus strains that are similar to Bacillus anthracis have been detected in hospitals. The B. cereus sphingomyelinase contributes to its pathogenicity, as do sphingomyelinases produced by Staphylococcus aureus, Pseudomonas aeruginosa, Helicobacter pylori, and B. anthracis. Highly pathogenic B. cereus produces a large amount of sphingomyelinase. In this review, we describe the regulation of sphingomyelinase expression through the PlcR-PapR system, the pathogenicity of bacterial sphingomyelinases, and their potential as therapeutic drug targets.


Subject(s)
Bacillus cereus/metabolism , Bacillus cereus/pathogenicity , Sphingomyelin Phosphodiesterase/metabolism , Humans
3.
Article in English | MEDLINE | ID: mdl-28983473

ABSTRACT

Pseudomonas aeruginosa can penetrate the layer of mucus formed by host intestinal epithelial cells, often resulting in sepsis in immunocompromised patients. We have previously demonstrated that P. aeruginosa can penetrate the mucin layer by flagellar motility and the degradation of the mucin layer. However, it remains unclear how P. aeruginosa initially recognizes epithelial cells. Using the human epithelial colorectal adenocarcinoma (Caco-2) cell line, we investigated extracellular signaling that could facilitate the penetration of P. aeruginosa through the mucin layer. The supernatant from Caco-2 cell cultures increased penetration of P. aeruginosa through an artificial mucin layer. The Caco-2 cell supernatant increased bacterial flagella-dependent swarming motility, but it did not influence P. aeruginosa growth or protease activity. Filtering of the Caco-2 cell supernatant indicated that proteins weighing <10 kDa increased mucin penetration, swarming motility, and, based on a tethered cell assay, induced acceleration of the flagellar filament rotational rate. Furthermore, a capillary assay showed that <10 kDa proteins in the Caco-2 cell supernatant attracted P. aeruginosa cells. Finally, we identified that growth-regulated oncogene-α (GRO-α) secreted by Caco-2 cells was a factor facilitating flagellar filament rotation and swarming motility, although it did not attract the bacteria. We conclude that penetration of the mucin layer by P. aeruginosa is facilitated by small proteins (<10 kDa) secreted by Caco-2 cells, both by inducing acceleration of flagellar motility and increasing chemotaxis.


Subject(s)
Bacterial Translocation , Chemotaxis/physiology , Intestinal Mucosa/microbiology , Mucins/metabolism , Pseudomonas aeruginosa/pathogenicity , Caco-2 Cells , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Cytokines/analysis , Flagella/physiology , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Plasmids/chemistry , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL