Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(45): e2309910120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903274

ABSTRACT

Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.


Subject(s)
Cerebellar Diseases , Zebrafish , Animals , Humans , Cerebellar Diseases/genetics , Genetic Variation , Golgi Apparatus , Zebrafish/genetics
2.
Proc Natl Acad Sci U S A ; 120(22): e2301725120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216550

ABSTRACT

Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1-Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1-Ccz1-RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1-Ccz1-RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1-Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.


Subject(s)
Drosophila Proteins , rab GTP-Binding Proteins , Animals , Cryoelectron Microscopy , rab GTP-Binding Proteins/metabolism , Zebrafish/metabolism , Drosophila , Drosophila Proteins/ultrastructure
3.
Plant J ; 118(5): 1312-1326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319894

ABSTRACT

Lignin is an important component of plant cell walls and plays crucial roles in the essential agronomic traits of tea quality and tenderness. However, the molecular mechanisms underlying the regulation of lignin biosynthesis in tea plants remain unclear. CsWRKY13 acts as a negative regulator of lignin biosynthesis in tea plants. In this study, we identified a GRAS transcription factor, phytochrome A signal transduction 1 (CsPAT1), that interacts with CsWRKY13. Silencing CsPAT1 expression in tea plants and heterologous overexpression in Arabidopsis demonstrated that CsPAT1 positively regulates lignin accumulation. Further investigation revealed that CsWRKY13 directly binds to the promoters of CsPAL and CsC4H and suppresses transcription of CsPAL and CsC4H. CsPAT1 indirectly affects the promoter activities of CsPAL and CsC4H by interacting with CsWRKY13, thereby facilitating lignin biosynthesis in tea plants. Compared with the expression of CsWRKY13 alone, the co-expression of CsPAT1 and CsWRKY13 in Oryza sativa significantly increased lignin biosynthesis. Conversely, compared with the expression of CsPAT1 alone, the co-expression of CsPAT1 and CsWRKY13 in O. sativa significantly reduced lignin accumulation. These results demonstrated the antagonistic regulation of the lignin biosynthesis pathway by CsPAT1 and CsWRKY13. These findings improve our understanding of lignin biosynthesis mechanisms in tea plants and provide insights into the role of the GRAS transcription factor family in lignin accumulation.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Lignin , Plant Proteins , Transcription Factors , Lignin/metabolism , Lignin/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics
4.
Cell Mol Life Sci ; 81(1): 42, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217709

ABSTRACT

Neprilysin (NEP) is an emerging biomarker for various diseases including heart failure (HF). However, major inter-assay inconsistency in the reported concentrations of circulating NEP and uncertainty with respect to its correlations with type and severity of disease are in part attributed to poorly characterized antibodies supplied in commercial ELISA kits. Validated antibodies with well-defined binding footprints are critical for understanding the biological and clinical context of NEP immunoassay data. To achieve this, we applied in silico epitope prediction and rational peptide selection to generate monoclonal antibodies (mAbs) against spatially distant sites on NEP. One of the selected epitopes contained published N-linked glycosylation sites at N285 and N294. The best antibody pair, mAb 17E11 and 31E1 (glycosylation-sensitive), were characterized by surface plasmon resonance, isotyping, epitope mapping, and western blotting. A validated two-site sandwich NEP ELISA with a limit of detection of 2.15 pg/ml and working range of 13.1-8000 pg/ml was developed with these mAbs. Western analysis using a validated commercial polyclonal antibody (PE pAb) and our mAbs revealed that non-HF and HF plasma NEP circulates as a heterogenous mix of moieties that possibly reflect proteolytic processing, post-translational modifications and homo-dimerization. Both our mAbs detected a ~ 33 kDa NEP fragment which was not apparent with PE pAb, as well as a common ~ 57-60 kDa moiety. These antibodies exhibit different affinities for the various NEP targets. Immunoassay results are dependent on NEP epitopes variably detected by the antibody pairs used, explaining the current discordant NEP measurements derived from different ELISA kits.


Subject(s)
Antibodies, Monoclonal , Heart Failure , Humans , Epitopes , Neprilysin/metabolism , Enzyme-Linked Immunosorbent Assay , Immunoassay/methods
5.
Nucleic Acids Res ; 51(D1): D603-D610, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399496

ABSTRACT

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.


Subject(s)
Genome , Genomics , Multigene Family , Biosynthetic Pathways/genetics
6.
Dev Biol ; 493: 80-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36368521

ABSTRACT

Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.


Subject(s)
Bone and Bones , Chondrocytes , Stress, Mechanical , Chondrocytes/physiology , Homeostasis , Biophysics
7.
Soft Matter ; 20(23): 4548-4560, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38502376

ABSTRACT

Nanoparticles present in various environments can interact with living organisms, potentially leading to deleterious effects. Understanding how these nanoparticles interact with cell membranes is crucial for rational assessment of their impact on diverse biological processes. While previous research has explored particle-membrane interactions, the dynamic processes of particle wrapping by fluid vesicles remain incompletely understood. In this study, we introduce a force-based, continuum-scale model utilizing triangulated mesh representation and discrete differential geometry to investigate particle-vesicle interaction dynamics. Our model captures the transformation of vesicle shape and nanoparticle wrapping by calculating the forces arising from membrane bending energy and particle adhesion energy. Inspired by cell phagocytosis of large particles, we focus on establishing a quantitative understanding of large-scale vesicle deformation induced by the interaction with particles of comparable sizes. We first examine the interactions between spherical vesicles and individual nanospheres, both externally and internally, and quantify energy landscapes across different wrapping fractions of the nanoparticles. Furthermore, we explore multiple particle interactions with biologically relevant fluid vesicles with nonspherical shapes. Our study reveals that initial particle positions and interaction sequences are critical in determining the final equilibrium shapes of the vesicle-particle complexes in these interactions. These findings emphasize the importance of nanoparticle positioning and wrapping fractions in the dynamics of particle-vesicle interactions, providing crucial insights for future research in the field.

8.
Chem Rev ; 122(3): 3820-3878, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34939420

ABSTRACT

With the development of advanced electronic devices and electric power systems, polymer-based dielectric film capacitors with high energy storage capability have become particularly important. Compared with polymer nanocomposites with widespread attention, all-organic polymers are fundamental and have been proven to be more effective choices in the process of scalable, continuous, and large-scale industrial production, leading to many dielectric and energy storage applications. In the past decade, efforts have intensified in this field with great progress in newly discovered dielectric polymers, fundamental production technologies, and extension toward emerging computational strategies. This review summarizes the recent progress in the field of energy storage based on conventional as well as heat-resistant all-organic polymer materials with the focus on strategies to enhance the dielectric properties and energy storage performances. The key parameters of all-organic polymers, such as dielectric constant, dielectric loss, breakdown strength, energy density, and charge-discharge efficiency, have been thoroughly studied. In addition, the applications of computer-aided calculation including density functional theory, machine learning, and materials genome in rational design and performance prediction of polymer dielectrics are reviewed in detail. Based on a comprehensive understanding of recent developments, guidelines and prospects for the future development of all-organic polymer materials with dielectric and energy storage applications are proposed.

9.
Bioorg Chem ; 147: 107356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604021

ABSTRACT

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.


Subject(s)
Fluorescent Dyes , Heparin , Peptides , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Heparin/analysis , Heparin/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure , Humans , Spectrometry, Fluorescence
10.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38234133

ABSTRACT

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Subject(s)
Arthritis, Rheumatoid , Diterpenes , Orthosiphon , Humans , Orthosiphon/chemistry , Orthosiphon/metabolism , Abietanes , Arthritis, Rheumatoid/drug therapy , Tumor Necrosis Factor-alpha , Diterpenes/pharmacology , Diterpenes/chemistry , NF-kappa B/metabolism
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34462354

ABSTRACT

The molecular events that determine the recycling versus degradation fates of internalized membrane proteins remain poorly understood. Two of the three members of the SNX-FERM family, SNX17 and SNX31, utilize their FERM domain to mediate endocytic trafficking of cargo proteins harboring the NPxY/NxxY motif. In contrast, SNX27 does not recycle NPxY/NxxY-containing cargo but instead recycles cargo containing PDZ-binding motifs via its PDZ domain. The underlying mechanism governing this divergence in FERM domain binding is poorly understood. Here, we report that the FERM domain of SNX27 is functionally distinct from SNX17 and interacts with a novel DLF motif localized within the N terminus of SNX1/2 instead of the NPxY/NxxY motif in cargo proteins. The SNX27-FERM-SNX1 complex structure reveals that the DLF motif of SNX1 binds to a hydrophobic cave surrounded by positively charged residues on the surface of SNX27. The interaction between SNX27 and SNX1/2 is critical for efficient SNX27 recruitment to endosomes and endocytic recycling of multiple cargoes. Finally, we show that the interaction between SNX27 and SNX1/2 is critical for brain development in zebrafish. Altogether, our study solves a long-standing puzzle in the field and suggests that SNX27 and SNX17 mediate endocytic recycling through fundamentally distinct mechanisms.


Subject(s)
Brain/growth & development , FERM Domains , Sorting Nexins/metabolism , Animals , Brain/metabolism , Endocytosis , Glucose Transporter Type 1/metabolism , Humans , Neurons/cytology , Protein Binding , Protein Transport , Receptor Activator of Nuclear Factor-kappa B/metabolism , Sorting Nexins/chemistry , Zebrafish/growth & development , Zebrafish/metabolism
12.
Aging Ment Health ; : 1-13, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613512

ABSTRACT

OBJECTIVES: Older-adult migrants constitute a proportion of the global population, and loneliness hinders their adaptation to host areas. However, review studies on risk factors for loneliness target general older-adults without focusing on older-adult migrants. Therefore, this study systematically reviews and synthesizes the factors influencing the loneliness of older-adult migrants. METHOD: Five databases were searched and screened for quantitative studies investigating the relationship between risk factors and loneliness among older-adult migrants (over age 50). Finally, 35 articles were included. RESULTS: Factors related to loneliness in older-adult migrants were synthesized into sociodemographic, physical health, psychological, interpersonal, and acculturation-related factors. Consistent significant relationships with loneliness were found for a few risk factors, including not having spouses, low subjective financial status, poor self-rated health, poor psychological status, few non-kin ties, low quality of kin and non-kin ties, and a weak sense of belonging to either one's ethnic group or that of the host areas. CONCLUSION: This review discusses the unique findings on the risk factors for loneliness in older-adult migrants. Additionally, the current literature on loneliness in older-adult migrants has some research gaps, calling for longitudinal studies with a rigorous design.

13.
Ultrastruct Pathol ; 48(3): 221-233, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38619116

ABSTRACT

The endoplasmic reticulum(ER)is the largest membranous network serving as a region for protein, lipid and steroid synthesis, transport and storage. Detailed information about ER-cisternae, ER-tubules and rough endoplasmic reticulum (rER) is scarce in human blood cells. This study describes a series of giant inclusions and Auer bodies in promyeloblasts in six patients with acute promyelocytic leukemia (APL), by light microscopy, transmission electron microscopy (TEM) and cytochemical stains. TEM revealed that giant inclusions and pro-Auer bodies were associated with rER and surrounded by tubular structures composed of degenerated or redundant membrane in promyeloblasts, which corresponded with elements of the ER system. This paper reveals that in the promyeloblasts of APL, ER is the source of and transforms progressively into giant inclusions and Auer bodies.


Subject(s)
Endoplasmic Reticulum , Inclusion Bodies , Leukemia, Promyelocytic, Acute , Microscopy, Electron, Transmission , Humans , Leukemia, Promyelocytic, Acute/pathology , Inclusion Bodies/ultrastructure , Male , Female , Endoplasmic Reticulum/ultrastructure , Adult , Middle Aged , Young Adult , Adolescent , Granulocyte Precursor Cells/ultrastructure , Granulocyte Precursor Cells/pathology
14.
J Asian Nat Prod Res ; 26(8): 993-1000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629616

ABSTRACT

A new 14-membered resorcylic acid lactone (RAL14), chaetolactone A (1), along with three known ones (2-4), was obtained from the fermentation of the soil-derived fungus Chaetosphaeronema sp. SSJZ001. Their structures were established based on extensive spectroscopic data analyses (UV, IR, HRESIMS, 1D, and 2D NMR),13C NMR chemical shifts calculations coupled with the DP4+ probability method, theoretical calculations of ECD spectra, as well as X-ray diffraction analysis. All compounds were evaluated for their cytotoxic effects against A549, HO-8910, and MCF-7 cell lines.


Subject(s)
Ascomycota , Lactones , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ascomycota/chemistry , Molecular Structure , Humans , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , MCF-7 Cells , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular
15.
Fa Yi Xue Za Zhi ; 40(1): 64-69, 2024 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-38500463

ABSTRACT

Biological evidence is relatively common evidence in criminal cases, and it has strong probative power because it carries DNA information for individual identification. At the scene of fire-related cases, the complex thermal environment, the escape of trapped people, the firefighting and rescue operations, and the deliberate destruction of criminal suspects will all affect the biological evidence in the fire scene. Scholars at home and abroad have explored and studied the effectiveness of biological evidence identification in fire scenes, and found that the blood stains, semen stains, bones, etc. are the main biological evidence which can be easily recovered with DNA in fire scenes. In order to analyze the research status and development trend of biological evidence in fire scenes, this paper systematically sorts out the relevant research, mainly including the soot removal technology, appearance method of typical biological evidence, and possibility of identifying other biological evidence. This paper also prospects the next step of research direction, in order to provide reference for the identification of biological evidence and improve the value of biological evidence in fire scenes.


Subject(s)
Blood Stains , Body Fluids , Fires , Humans , Semen , DNA/genetics
16.
Angew Chem Int Ed Engl ; 63(22): e202403695, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38436549

ABSTRACT

Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.

17.
Mol Med ; 29(1): 125, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710183

ABSTRACT

BACKGROUND: Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), although the specific underlying mechanisms remain largely unknown. This study aimed to clarify the role and possible mechanism of acid sphingomyelinase (ASM)-mediated osteoblast ferroptosis in T2DOP. METHODS: We treated hFob1.19 cells with normal glucose (NG) and different concentrations of high glucose (HG, 26.25 mM, 35 mM, or 43.75 mM) for 48 h. We then measured cell viability and osteogenic function, quantified ferroptosis and autophagy levels, and measured the levels of ASM and ceramide in the cells. To further investigate the specific mechanism, we examined these indicators by knocking down ASM expression, hydroxychloroquine (HCQ) treatment, or N-acetylcysteine (NAC) treatment. Moreover, a T2DOP rat model was induced and microcomputed tomography was used to observe the bone microstructure. We also evaluated the serum levels of iron metabolism-associated factors, ceramide and lipid peroxidation (LPO) and measured the expression of ASM, LC3 and GPX4 in bone tissues. RESULTS: HG inhibited the viability and osteogenic function of osteoblasts by inducing ferroptosis in a concentration-dependent manner. Furthermore, the expression of ASM and ceramide and autophagy levels were increased by HG treatment, and these factors were required for the HG-induced reactive oxygen species (ROS) generation and LPO. Similarly, inhibiting intracellular ROS also reduced HG-induced ASM activation and autophagy. ASM-mediated activation of autophagy was crucial for HG-induced degradation of GPX4, and inhibiting ASM improved osteogenic function by decreasing HG-induced autophagy, GPX4 degradation, LPO and subsequent ferroptosis. We also found that inhibiting ASM could alleviated ferroptosis and autophagy and improved osteogenic function in a T2DOP rat model. CONCLUSION: ASM-mediated autophagy activation induces osteoblast ferroptosis under HG conditions through the degradation of GPX4, providing a novel mechanistic insight into the treatment and prevention of T2DOP.


Subject(s)
Diabetes Mellitus, Type 2 , Ferroptosis , Osteoporosis , Animals , Rats , Autophagy , Ceramides , Glucose , Osteoporosis/drug therapy , Osteoporosis/etiology , Reactive Oxygen Species , Sphingomyelin Phosphodiesterase/genetics , X-Ray Microtomography
18.
Biochem Biophys Res Commun ; 671: 246-254, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37307708

ABSTRACT

Vascular dementia (VaD), the second most common type of dementia, is attributed to lower cerebral blood flow. To date, there is still no available clinical treatment for VaD. The phenolic glucoside gastrodin (GAS) is known for its neuroprotective effects, but the role and mechanisms of action on VD remains unclear. In this study, we aim to investigate the neuroprotective role and underlying mechanisms of GAS on chronic cerebral hypoperfusion (CCH)-mediated VaD rats and hypoxia-induced injury of HT22 cells. The study showed that GAS relieved learning and memory deficits, ameliorated hippocampus histological lesions in VaD rats. Additionally, GAS down-regulated LC3II/I, Beclin-1 levels and up-regulated P62 level in VaD rats and hypoxia-injured HT22 cells. Notably, GAS rescued the phosphorylation of PI3K/AKT pathway-related proteins expression, which regulates autophagy. Mechanistic studies verify that YP-740, a PI3K agonist, significantly resulted in inhibition of excessive autophagy and apoptosis with no significant differences were observed in the YP-740 and GAS co-treatment. Meantime, we found that LY294002, a PI3K inhibitor, substantially abolished GAS-mediated neuroprotection. These results revealed that the effects of GAS on VaD are related to stimulating PI3K/AKT pathway-mediated autophagy, suggesting a potentially beneficial therapeutic strategy for VaD.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Neuroprotective Agents , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Dementia, Vascular/drug therapy , Dementia, Vascular/pathology , Rats, Sprague-Dawley , Signal Transduction , Autophagy , Glucosides/pharmacology , Glucosides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cognitive Dysfunction/metabolism , Hypoxia/drug therapy
19.
Ann Surg Oncol ; 30(12): 7442-7451, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37326809

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the predictive value of the 5-factor modified frailty index (mFI-5) for postoperative mortality, delirium and pneumonia in patients over 65 years of age undergoing elective lung cancer surgery. METHODS: Data were collected from a single-center retrospective cohort study conducted in a general tertiary hospital from January 2017 to August 2019. In total, the study included 1372 elderly patients aged over 65 who underwent elective lung cancer surgery. They were divided into frail group (mFI-5, 2-5), prefrail group (mFI-5, 1) and robust group (mFI-5, 0) on the basis of mFI-5 classification. The primary outcome was postoperative 1-year all-cause mortality. Secondary outcomes were postoperative pneumonia and postoperative delirium. RESULTS: Frailty group had the highest incidence of postoperative delirium (frailty 31.2% versus prefrailty 1.6% versus robust 1.5%, p < 0.001), postoperative pneumonia (frailty 23.5% versus prefrailty 7.2% versus robust 7.7%, p < 0.001), and postoperative 1-year mortality (frailty 7.0% versus prefrailty 2.2% versus robust 1.9%. p < 0.001). Frail patients have significantly longer length of hospitalization than those in the robust group and prefrail patients (p < 0.001). Multivariate analysis showed a clear link between frailty and increased risk of postoperative delirium (aOR 2.775, 95% CI 1.776-5.417, p < 0.001), postoperative pneumonia (aOR 3.291, 95% CI 2.169-4.993, p < 0.001) and postoperative 1-year mortality (aOR 3.364, 95% CI, 1.516-7.464, p = 0.003). CONCLUSIONS: mFI-5 has potential clinical utility in predicting postoperative death, delirium and pneumonia incidence in elderly patients undergoing radical lung cancer surgery. Frailty screening of patients (mFI-5) may provide benefits in risk stratification, targeted intervention efforts, and assist physicians in clinical decision-making.

20.
PLoS Biol ; 18(3): e3000631, 2020 03.
Article in English | MEDLINE | ID: mdl-32150533

ABSTRACT

Endocytic recycling of internalized transmembrane proteins is essential for many important physiological processes. Recent studies have revealed that retromer-related Sorting Nexin family (SNX)-Bin/Amphiphysin/Rvs (BAR) proteins can directly recognize cargoes like cation-independent mannose 6-phosphate receptor (CI-MPR) and Insulin-like growth factor 1 receptor (IGF1R); however, it remains poorly understood how SNX-BARs select specific cargo proteins and whether they recognize additional ligands. Here, we discovered that the binding between SNX-BARs and CI-MPR or IGF1R is mediated by the phox-homology (PX) domain of SNX5 or SNX6 and a bipartite motif, termed SNX-BAR-binding motif (SBM), in the cargoes. Using this motif, we identified over 70 putative SNX-BAR ligands, many of which play critical roles in apoptosis, cell adhesion, signal transduction, or metabolite homeostasis. Remarkably, SNX-BARs could cooperate with both SNX27 and retromer in the recycling of ligands encompassing the SBM, PDZ-binding motif, or both motifs. Overall, our studies establish that SNX-BARs function as a direct cargo-selecting module for a large set of transmembrane proteins transiting the endosome, in addition to their roles in phospholipid recognition and biogenesis of tubular structures.


Subject(s)
Proteome/metabolism , Receptor, IGF Type 2/metabolism , Sorting Nexins/chemistry , Sorting Nexins/metabolism , Amino Acid Motifs , Binding Sites , Biological Transport , Computer Simulation , Gene Knockout Techniques , HeLa Cells , Humans , Protein Domains , Proteome/chemistry , Receptor, IGF Type 2/chemistry , Semaphorins/metabolism , Sorting Nexins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL