ABSTRACT
Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.
Subject(s)
Iron , Tumor Microenvironment , Animals , Iron/metabolism , Mice , Tumor Microenvironment/immunology , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/immunology , Mice, Inbred C57BL , Lipocalin-2/metabolism , Lipocalin-2/immunology , Female , Symbiosis/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophage Activation/immunology , Mice, KnockoutABSTRACT
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Subject(s)
Colitis , Colon , Gastrointestinal Microbiome , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory , Animals , Gastrointestinal Microbiome/immunology , Mice , T-Lymphocytes, Regulatory/immunology , Colon/immunology , Colon/microbiology , Colitis/immunology , Receptors, Antigen, T-Cell/immunology , Mice, Inbred C57BL , Dextran Sulfate , Specific Pathogen-Free Organisms , Interleukin-10/immunologyABSTRACT
BACKGROUND AND AIMS: Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS: Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS: RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
ABSTRACT
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.
Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Interleukin-10 Receptor beta Subunit , Myeloid Cells , Neoplasm Recurrence, Local , Pancreatic Neoplasms , Receptors, Interleukin , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/blood , Humans , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/blood , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Receptors, Interleukin/genetics , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Interleukin-10 Receptor beta Subunit/genetics , Female , Male , Tumor Microenvironment/genetics , Cell Line, TumorABSTRACT
Vepdegestrant (formerly ARV-471), a novel proteolysis-targeting chimera (PROTAC), targets estrogen receptor alpha (ERα) for degradation, offering a promising option to treat advanced ER-positive breast cancer. We developed and validated a sensitive and rapid liquid chromatography-tandem mass spectrometry method to quantify vepdegestrant in rodent plasma using bavdegalutamide (formerly ARV-110) as an internal standard. Plasma samples were prepared with protein precipitation using acetonitrile and analyzed using reverse-phase C18 columns and a mobile phase of 10 mM ammonium formate in distilled water and acetonitrile. The method demonstrated linearity from 1 to 1000 ng/mL in mouse and rat plasma, meeting all validation criteria, and successfully applied to in vivo and in vitro studies. Pharmacokinetic analysis revealed low-to-moderate clearance (313.3, 1053 mL/h/kg) and oral bioavailability (17.91, 24.12%) of vepdegestrant in mice and rats, respectively. It was unstable in buffer solutions across pH 2-10 and in phosphate-buffered saline (pH 7.4), likely due to adsorption, but remained stable in mouse and rat plasma at varying temperatures. In liver microsomes, vepdegestrant exhibited moderate stability in rats but was stable in mice, dogs, and humans. These findings enhance the understanding of pharmacokinetic properties of vepdegestrant supporting further development of PROTAC drugs.
Subject(s)
Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Mice , Rats , Chromatography, Liquid/methods , Microsomes, Liver/metabolism , Drug Stability , Female , Male , Rats, Sprague-Dawley , HumansABSTRACT
Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.
Subject(s)
Acrylic Resins , Antifungal Agents , Candida albicans , Glass , Materials Testing , Phosphates , Strontium , Surface Properties , Candida albicans/drug effects , Acrylic Resins/chemistry , Strontium/pharmacology , Strontium/chemistry , Antifungal Agents/pharmacology , Glass/chemistry , Phosphates/pharmacology , Polymerization , Hardness , Flexural Strength , Humans , In Vitro TechniquesABSTRACT
RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP Staufen may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS-but not with mutated endogenous NLS-potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/-), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/- is protective. stau+/- also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.
Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Frontotemporal Dementia/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , RNA-Binding Proteins/genetics , RNA/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Arginine/genetics , C9orf72 Protein/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Dipeptides/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Frontotemporal Dementia/pathology , Gene Knockdown Techniques , Humans , Neurons/metabolism , Neurons/pathology , Nuclear Localization Signals/genetics , RNA Processing, Post-Transcriptional/geneticsABSTRACT
Environmental motion can induce physiological stress and trigger motion sickness. In these situations, lower-than-normal levels of adrenocorticotropic hormone (ACTH) have been linked with increased susceptibility to motion sickness in healthy individuals. However, whether patients with primary adrenal insufficiency, who typically have altered ACTH levels compared to the normal population, exhibit alterations in sickness susceptibility remains unknown. To address this, we recruited 78 patients with primary adrenal insufficiency and compared changes in the motion sickness susceptibility scores from 10 years prior to diagnosis (i.e. retrospective sickness rating) with the current sickness measures (post-diagnosis), using the validated motion sickness susceptibility questionnaire (MSSQ). Group analysis revealed that motion sickness susceptibility pre-diagnosis did not differ between controls and patients. We observed that following treatment, current measures of motion sickness were significantly increased in patients and subsequent analysis revealed that this increase was primarily in female patients with primary adrenal insufficiency. These observations corroborate the role of stress hormones in modulating sickness susceptibility and support the notion of a sexually dimorphic adrenal cortex as we only observed selective enhancement in females. A potential mechanism to account for our novel observation remains obscure, but we speculate that it may reflect a complex sex-disease-drug interaction.
Subject(s)
Addison Disease , Motion Sickness , Humans , Female , Sex Characteristics , Retrospective Studies , Motion Sickness/etiology , Adrenocorticotropic HormoneABSTRACT
BACKGROUND: This study evaluated the effects of concomitant lateral patellar retinacular release (LPRR) during medial unicompartmental knee arthroplasty (UKA). METHODS: We retrospectively analyzed 100 patients who had patello-femoral joint (PFJ) arthritis who underwent medial UKA with (n = 50) and without (n = 50) LPRR who had ≥2 years follow-up. Radiological parameters associated with lateral retinacular tightness, including patellar tilt angle (PTA), lateral patello-femoral angle (LPFA), and congruence angle, were measured. Functional evaluation was performed using the Knee Society Pain Score, Knee Society Function Score (KSFS), Kujala Score, and the Western Ontario McMaster Universities Osteoarthritis Index score. Intraoperative patello-femoral pressure evaluation was performed on 10 knees to evaluate the pressure changes before and after LPRR. Mann-Whitney U-tests were used for statistical analyses. RESULTS: Demographic data did not differ between the LPRR(+) and LPRR(-) groups. A decrease in PTA and an increase in LPFA were observed in the LPRR(+) group compared to those in the LPRR(-) group (PTA; -0.54 versus -1.74, P = .002, LPFA; 0.51 versus 2.01, P = .010). The LPRR(+) group showed significantly better KSFS and Kujala scores than the LPRR(-) group (KSFS: 90 versus 80, P = .017; Kujala score: 86 versus 79, P = .009). Intraoperative patello-femoral pressure analysis showed a 22.6% reduction in the PFJ contact pressure and an 18.7% reduction in PFJ peak pressure after LPRR. (P = .0015, P < .0001, respectively) CONCLUSION: A LPRR during UKA may be a simple and useful adjunct procedure to relieve PFJ symptoms with concomitant PFJOA.
Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Osteoarthritis, Knee , Osteoarthritis , Patellofemoral Joint , Humans , Arthroplasty, Replacement, Knee/methods , Retrospective Studies , Patellofemoral Joint/surgery , Osteoarthritis/surgery , Femur/surgery , Osteoarthritis, Knee/complications , Knee Joint/surgery , Treatment OutcomeABSTRACT
Soybean [Glycine max (L.) Merr.], an important oilseed crop, is a low-cost source of protein and oil. In Southeast Asia and Africa, soybeans are widely cultivated for use as traditional food and feed and industrial purposes. Given the ongoing changes in global climate, developing crops that are resistant to climatic extremes and produce viable yields under predicted climatic conditions will be essential in the coming decades. To develop such crops, it will be necessary to gain a thorough understanding of the genetic basis of agronomic and plant root traits. As plant roots generally lie beneath the soil surface, detailed observations and phenotyping throughout plant development present several challenges, and thus the associated traits have tended to be ignored in genomics studies. In this study, we phenotyped 357 soybean landraces at the early vegetative (V2) growth stages and used a 180 K single-nucleotide polymorphism (SNP) soybean array in a genome-wide association study (GWAS) conducted to determine the phenotypic relationships among root traits, elucidate the genetic bases, and identify significant SNPs associated with root trait-controlling genomic regions/loci. A total of 112 significant SNP loci/regions were detected for seven root traits, and we identified 55 putative candidate genes considered to be the most promising. Our findings in this study indicate that a combined approach based on SNP array and GWAS analyses can be applied to unravel the genetic basis of complex root traits in soybean, and may provide an alternative high-resolution marker strategy to traditional bi-parental mapping. In addition, the identified SNPs, candidate genes, and diverse variations in the root traits of soybean landraces will serve as a valuable basis for further application in genetic studies and the breeding of climate-resilient soybeans characterized by improved root traits.
Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Glycine max/metabolism , Chromosome Mapping , Quantitative Trait Loci , Linkage Disequilibrium , Genome, Plant , Plant Breeding , Phenotype , Polymorphism, Single NucleotideABSTRACT
As observed in the COVID-19 pandemic, RNA viruses continue to rapidly evolve through mutations. In the absence of effective therapeutics, early detection of new severely pathogenic viruses and quarantine of infected people are critical for reducing the spread of the viral infections. However, conventional detection methods require a substantial amount of time to develop probes specific to new viruses, thereby impeding immediate response to the emergence of viral pathogens. In this study, we identified multiple types of viruses by obtaining the spectral fingerprint of their surface proteins with probe-free surface-enhanced Raman scattering (SERS). In addition, the SERS-based method can remarkably distinguish influenza virus variants with several surface protein point mutations from their parental strain. Principal component analysis (PCA) of the SERS spectra systematically captured the key Raman bands to distinguish the variants. Our results show that the combination of SERS and PCA can be a promising tool for rapid detection of newly emerging mutant viruses without a virus-specific probe.
Subject(s)
COVID-19 , Orthomyxoviridae , Viruses , Humans , Spectrum Analysis, Raman/methods , Point Mutation , PandemicsABSTRACT
AIMS: Diverse genetic and/or external factors may induce psoriasis. Drug exposure is 1 such prominent external factor; antihypertensive drugs are reportedly associated with psoriasis, but study results have been inconsistent. In this context, we investigated the associations between antihypertensive drugs and incidence if psoriasis via a systematic literature review and meta-analysis. METHODS: Literature search in databases such as PubMed, Embase and Web of Science was conducted on 8 January 2021, and obtained data were pooled for meta- and network meta-analysis. Fixed- or random effect models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for evaluating the strength of the associations between antihypertensive drugs and psoriasis incidence. In addition to meta-analysis, Bayesian network meta-analysis was performed. ResultsThirteen eligible studies were included for meta-analysis with 6 378 116 individuals and 8 studies for network meta-analysis with 5 615 918 individuals. All antihypertensive drugs were significantly associated with psoriasis incidence. In a meta-analysis, the pooled ORs were 1.67 (95% CI: 1.31-2.13) for angiotensin-converting enzyme (ACE) inhibitors, 1.40 (95% CI: 1.20-1.63) for ß-blockers, 1.53 (95% CI: 1.23-1.89) for calcium-channel blockers (CCBs), and 1.70 (95% CI: 1.40-2.06) for thiazide diuretics. For the comparative risks of psoriasis among antihypertensive drugs in the network meta-analysis, ORs were 2.09 (95% CI: 1.39-3.18) for ACE inhibitors, 1.35 (95% CI: 0.99-1.91) for BBs, 1.53 (95% CI: 1.07-2.24) for CCBs and 1.80 (95% CI: 1.23-2.66) for thiazide diuretics. CONCLUSION: This study confirmed the associations between antihypertensive drugs and psoriasis; ACE inhibitors, BBs, CCBs and thiazide diuretics increased the risk of psoriasis. Therefore, antihypertensive drug users should be carefully monitored for psoriasis.
Subject(s)
Hypertension , Psoriasis , Adrenergic beta-Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/adverse effects , Bayes Theorem , Calcium Channel Blockers/therapeutic use , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Network Meta-Analysis , Psoriasis/drug therapy , Psoriasis/epidemiology , Sodium Chloride Symporter Inhibitors/therapeutic useABSTRACT
AIMS: This systematic literature review and meta-analysis aimed to evaluate the risk factors for vancomycin-associated acute kidney injury (AKI) incidence. METHODS: This study assessed risk factors for vancomycin-associated AKI in adult patients by searching studies from PubMed, the Cochrane Library and Embase. Random effect models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Fifty-three studies were included in our meta-analysis. For patient factors, black race (OR 1.47, 95% CI: 1.16-1.87), Caucasian (OR 0.72, 95% CI: 0.58-0.90) and obesity (OR 1.46, 95% CI: 1.12-1.90) were associated with an increase in vancomycin-associated AKIs. In terms of vancomycin-related factors, longer treatment duration (>14 d; OR 1.73, 95% CI: 1.06-2.83), serum vancomycin trough level >15 µg/mL (OR 2.10, 95% CI: 1.43-3.07) and vancomycin trough level >20 µg/mL (OR 2.84, 95% CI: 1.48-5.44) increased the risks of vancomycin-associated AKI. For comorbidities and clinical factors, renal disease (OR 2.19, 95% CI: 1.51-3.17) showed the highest odds of vancomycin-associated AKI, followed by hepatic disease, intensive care unit admission, heart failure, sepsis, coronary heart disease and diabetes mellitus. For concomitant nephrotoxic drugs, amphotericin B (OR 5.21, 95% CI: 3.44-7.87) showed the highest odds of vancomycin-associated AKI, followed by acyclovir (OR 3.22, 95% CI: 1.39-7.46), vasopressors, loop diuretics, piperacillin-tazobactam and aminoglycoside. The use of any concomitant nephrotoxic agent (OR 1.74, 95% CI: 1.17-2.58) increased the odds of vancomycin-associated AKI. CONCLUSION: Our results may help predict the risk of vancomycin-associated AKI in the clinical setting.
Subject(s)
Acute Kidney Injury , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Adult , Anti-Bacterial Agents/adverse effects , Drug Therapy, Combination , Humans , Retrospective Studies , Risk Factors , Vancomycin/adverse effectsABSTRACT
BACKGROUND: Respiratory infections among children, particularly community-acquired pneumonia (CAP), is a major disease with a high frequency among outpatient and inpatient visits. The causes of CAP vary depending on individual susceptibility, the epidemiological characteristics of the community, and the season. We performed this study to establish a nationwide surveillance network system and identify the causative agents for CAP and antibiotic resistance in Korean children with CAP. METHODS: The monitoring network was composed of 28 secondary and tertiary medical institutions. Upper and lower respiratory samples were assayed using a culture or polymerase chain reaction (PCR) from August 2018 to May 2020. RESULTS: A total of 1023 cases were registered in patients with CAP, and PCR of atypical pneumonia pathogens revealed 422 cases of M. pneumoniae (41.3%). Respiratory viruses showed a positivity rate of 65.7% by multiplex PCR test, and human rhinovirus was the most common virus, with 312 cases (30.5%). Two hundred sixty four cases (25.8%) were isolated by culture, including 131 cases of S. aureus (12.8%), 92 cases of S. pneumoniae (9%), and 20 cases of H. influenzae (2%). The cultured, isolated bacteria may be colonized pathogen. The proportion of co-detection was 49.2%. The rate of antibiotic resistance showed similar results as previous reports. CONCLUSIONS: This study will identify the pathogens that cause respiratory infections and analyze the current status of antibiotic resistance to provide scientific evidence for management policies of domestic respiratory infections. Additionally, in preparation for new epidemics, including COVID-19, monitoring respiratory infections in children and adolescents has become more important, and research on this topic should be continuously conducted in the future.
Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Adolescent , Child , Community-Acquired Infections/microbiology , Humans , Multiplex Polymerase Chain Reaction/methods , Staphylococcus aureusABSTRACT
The role of the most fungal endophytes in the host plant growth and production of metabolites under stress conditions is still unknown. Fungal endophytes occur in almost all plants to benefit the host plants exposed to biotic and abiotic stress. In the present work, we investigated salt (NaCl) stress alleviation capability of a fungal endophyte (Porostereum spadiceum-AGH786). The culture filtrate (CF: 1.5 mL.) of P. spadiceum-AGH786 contained IAA (158 µg/ml), SA (29.3 µg/ml), proline (114.6 µg/ml), phenols (167.4 µg/ml), lipids (71.4 µg/ml), sugar (133.2 µg/ml), flavonoids (105.04 µg/ml). Smaller amounts of organic acids, such as butyric acid (5.8 µg/ml), formic acid (2.34 µg/ml), succinic acid (2.02 µg/ml), and quinic acid (2.25 µg/ml) were also found in CF of P. spadiceum-AGH786. Similarly, the CF displayed antioxidant activity in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Moreover, wheat plants colonized by P. spadiceum-AGH786 showed significantly (P = 0.05) higher polyphenol oxidases activity (2.2 mg/g DW) under normal conditions as compared to the NaCl-treated plants. We also observed that P. spadiceum-AGH786 improved biomass (0.30 g) of wheat plants subjected to 140 mM NaCl stress. The results conclude that the wheat plant colonization by P. spadiceum-AGH786 greatly improved the plant growth under 70 mM and 140 mM NaCl stress. Thus, the biomass of the P. Spadiceum-AGH786 can be used in saline soil to help the host plants.
Subject(s)
Polyporales , Triticum , Salt Stress , Sodium Chloride/metabolism , Triticum/metabolismABSTRACT
The demand for wheelchairs has increased recently as the population of the elderly and patients with disorders increases. However, society still pays less attention to infrastructure that can threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors, which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a novel system based on various convolutional neural networks (CNNs) to automatically classify the condition of sidewalks using images captured with depth and infrared modalities. Moreover, we compare the performance of training CNNs from scratch and the transfer learning approach, where the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained with self-supervised learning during transfer learning to leverage better image representations. Performance evaluation on the classification of the sidewalk condition was conducted with 100% and 10% of training data. The experimental results validate the effectiveness and feasibility of the proposed approach and bring future research directions.
Subject(s)
Wheelchairs , Aged , Humans , Machine Learning , Neural Networks, ComputerABSTRACT
African swine fever (ASF) is a substantial concern for global food production and security. However, lack of epidemiologic data in affected areas has limited the knowledge of the main drivers of ASF virus (ASFV) transmission. To assess the role of vehicle movements and wild boar populations in spreading ASFV to pig farms in South Korea, we combined data generated by ASF surveillance on pig farms and of wild boars with nationwide global positioning system-based tracking data for vehicles involved in farming activities. Vehicle movements from infected premises were associated with a higher probability of ASFV incursion into a farm than was geographic proximity to ASFV-infected wild boar populations. Although ASFV can spill over from infected wild boars into domestic pigs, vehicles played a substantial role in spreading infection between farms, despite rapid on-farm detection and culling. This finding highlights the need for interventions targeting farm-to-farm and wildlife-to-farm interfaces.
Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Farms , Republic of Korea , Sus scrofa , SwineABSTRACT
PURPOSE: This study investigated relationships of Oswestry Disability Index (ODI) and Short Form 36 (SF-36) total and subscale scores with global spinal parameters in patients with degenerative lumbar scoliosis (DLS). METHODS: This was a prospective single-center study of 126 consecutive patients with DLS. Disability was evaluated using the ODI and SF-36 total and subscale scores. Sagittal and coronal parameters were measured. Pearson's correlation analysis was performed to determine relationships between disability and radiographic parameters. RESULTS: The study population included 76 women and 15 men (mean age, 70.2 ± 8.4 years). Mean Cobb angle was 18.9° ± 8.0°. The ODI total score and SF-36 physical component score were only correlated with coronal parameters. ODI pain intensity, personal care, lifting, sitting, and sex life domains were only correlated with coronal parameters. The walking, standing, social life, and traveling domain scores were correlated with coronal and sagittal parameters. The SF-36 bodily pain and vitality domain scores were only correlated with coronal parameters. The SF-36 physical function domain score was correlated with both coronal and sagittal parameters. Among the clinical and radiographic parameters, the personal care score and the coronal vertical-axis had the strongest correlation (r = 0.425), although the r2 value was only 0.18. CONCLUSIONS: ODI total score and most of the subscale scores were significantly, but weakly correlated with coronal parameters. Sagittal parameters were only correlated with some of the ODI and SF-36 subscale scores. Analysis using ODI and SF-36 subscale scores may aid in understanding and treatment of disability in patients with DLS.
Subject(s)
Scoliosis , Aged , Disability Evaluation , Female , Humans , Lumbar Vertebrae , Lumbosacral Region , Male , Middle Aged , Prospective Studies , Quality of Life , Retrospective Studies , Treatment OutcomeABSTRACT
Background and Objectives: Abnormal epileptic discharges in the brain can affect the central brain regions that regulate autonomic activity and produce cardiac symptoms, either at onset or during propagation of a seizure. These autonomic alterations are related to cardiorespiratory disturbances, such as sudden unexpected death in epilepsy. This study aims to investigate the differences in cardiac autonomic function between patients with temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE) using ultra-short-term heart rate variability (HRV) analysis around seizures. Materials and Methods: We analyzed electrocardiogram (ECG) data recorded during 309 seizures in 58 patients with epilepsy. Twelve patients with FLE and 46 patients with TLE were included in this study. We extracted the HRV parameters from the ECG signal before, during and after the ictal interval with ultra-short-term HRV analysis. We statistically compared the HRV parameters using an independent t-test in each interval to compare the differences between groups, and repeated measures analysis of variance was used to test the group differences in longitudinal changes in the HRV parameters. We performed the Tukey-Kramer multiple comparisons procedure as the post hoc test. Results: Among the HRV parameters, the mean interval between heartbeats (RRi), normalized low-frequency band power (LF) and LF/HF ratio were statistically different between the interval and epilepsy types in the t-test. Repeated measures ANOVA showed that the mean RRi and RMSSD were significantly different by epilepsy type, and the normalized LF and LF/HF ratio significantly interacted with the epilepsy type and interval. Conclusions: During the pre-ictal interval, TLE patients showed an elevation in sympathetic activity, while the FLE patients showed an apparent increase and decrease in sympathetic activity when entering and ending the ictal period, respectively. The TLE patients showed a maintained elevation of sympathetic and vagal activity in the pos-ictal interval. These differences in autonomic cardiac characteristics between FLE and TLE might be relevant to the ictal symptoms which eventually result in SUDEP.
Subject(s)
Epilepsy, Frontal Lobe , Epilepsy, Temporal Lobe , Autonomic Nervous System , Electroencephalography , Epilepsy, Temporal Lobe/complications , Heart Rate , Humans , SeizuresABSTRACT
OBJECTIVE: The present prospective follow-up study aimed to evaluate the effects of KCNMB2 gene polymorphisms on ritodrine efficacy and adverse drug events (ADEs) in patients with preterm labor. METHODS: A total of 163 preterm labor patients were included in this single-center study. Nine single nucleotide polymorphisms (SNPs) in the KCNMB2 gene (rs10936979, rs7624046, rs7429015, rs7625907, rs6443559, rs9839376, rs9637454, rs11918114, and rs1382045) were assessed. The primary endpoint was time to delivery, and the secondary endpoint was ritodrine-induced ADEs. RESULTS: Patients with variant homozygotes of two SNPs (rs7624046 and rs9839376), which were in linkage disequilibrium, showed 2.06 [95% confidence interval (CI), 1.14-3.73] and 2.68 (95% CI, 1.16-6.20) times the hazard of time to delivery compared to wild-type allele carriers, respectively. Among demographic characteristics, gestational age at start of drug therapy and modified Bishop score were significant factors for time to delivery. Regarding safety outcomes, patients with variant homozygotes of rs7625907 had fewer ADEs compared to those with other genotypes (odds ratio, 0.32; 95% CI, 0.13-0.83). CONCLUSION: This pharmacogenomic study suggests that ritodrine efficacy and ADEs are associated with KCNMB2 gene polymorphisms in patients with preterm labor.