Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36772559

ABSTRACT

Rapid detection of heavy metals in solution is necessary to ensure human health and environmental protection. Some heavy-metal compounds are present in solution as compounds instead of as ions owing to their low ionization. Therefore, the development of sensor devices for the detection of heavy-metal compounds is important. In this study, as a proof of concept, we propose a sensor device using graphene and a chelating agent, which were used to develop an identification technique for three types of cadmium compounds. Pristine-graphene and two types of chelator-modified graphene-based sensors were successfully used to detect cadmium compounds at concentrations ranging from 50 to 1000 µM. The detection time was less than 5 min. The three type of graphene-based sensors responded differently to each cadmium compound, which indicates that they detected cadmium as a cadmium compound instead of as cadmium ions. Furthermore, we successfully identified cadmium compounds by operating these three types of sensors as a sensor array on the same substrate. The results indicate that sensors that focus on heavy-metal compounds instead of heavy-metal ions can be used for the detection of heavy metals in solution.

2.
Anal Sci ; 38(2): 241-245, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35286654

ABSTRACT

Animals sense odorants using olfactory receptors. Many trials have been conducted to develop artificial odorant sensors using olfactory receptors. However, the development has been hindered by the difficulty in obtaining olfactory receptors. In this study, we expressed an olfactory receptor, cOR52, using a wheat germ cell-free synthesis system. The functionality of the expressed cOR52 was confirmed by ligand concentration-dependent interactions with the mini-G protein. The expressed cOR52 was immobilized on a graphene field-effect transistor. The cOR52-modified graphene field-effect transistor exhibited a ligand-specific response between 100 nM and 100 µM. This approach seems to be applicable for other olfactory receptors. Therefore, it will be possible to develop an odorant sensor equipped with various olfactory receptors by this method.


Subject(s)
Graphite , Olfactory Receptor Neurons , Receptors, Odorant , Animals , Ligands , Odorants , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL