Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 116(49): 24620-24629, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31732666

ABSTRACT

Wnt signaling through both canonical and noncanonical pathways plays a core role in development. Dysregulation of these pathways often causes cancer development and progression. Although the pathways independently contribute to the core processes, a regulatory molecule that commonly activates both of them has not yet been reported. Here, we describe a long noncoding RNA (lncRNA), HERES, that epigenetically regulates both canonical and noncanonical Wnt signaling pathways in esophageal squamous cell carcinoma (ESCC). For this study, we performed RNA-seq analysis on Korean ESCC patients and validated these results on a larger ESCC cohort to identify lncRNAs commonly dysregulated in ESCCs. Six of the dysregulated lncRNAs were significantly associated with the clinical outcomes of ESCC patients and defined 4 ESCC subclasses with different prognoses. HERES reduction repressed cell proliferation, migration, invasion, and colony formation in ESCC cell lines and tumor growth in xenograft models. HERES appears to be a transacting factor that regulates CACNA2D3, SFRP2, and CXXC4 simultaneously to activate Wnt signaling pathways through an interaction with EZH2 via its G-quadruple structure-like motif. Our results suggest that HERES holds substantial potential as a therapeutic target for ESCC and probably other cancers caused by defects in Wnt signaling pathways.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , RNA, Long Noncoding/metabolism , Wnt Signaling Pathway/genetics , Calcium Channels/genetics , Cell Line, Tumor , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Datasets as Topic , Disease Progression , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Membrane Proteins/genetics , Middle Aged , Prognosis , Prospective Studies , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , RNA-Seq , Transcription Factors/genetics , Xenograft Model Antitumor Assays
2.
Genome Res ; 27(6): 1050-1062, 2017 06.
Article in English | MEDLINE | ID: mdl-28396519

ABSTRACT

The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data, by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcription start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising 230 billion RNA-seq reads from the ENCODE, Human BodyMap 2.0, The Cancer Genome Atlas, and GTEx projects, CAFE enabled us to predict the directions of about 220 billion unstranded reads, which led to the construction of more accurate transcriptome maps, comparable to the manually curated map, and a comprehensive lncRNA catalog that includes thousands of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex genomes but also to expand the universe of noncoding genomes.


Subject(s)
Chromosome Mapping/methods , Genome, Human , RNA, Long Noncoding/genetics , Software , Transcriptome , Benchmarking , Databases, Genetic , High-Throughput Nucleotide Sequencing , Humans , Likelihood Functions , RNA, Long Noncoding/metabolism , Transcription Initiation Site
3.
Brain ; 139(Pt 10): 2722-2739, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27538419

ABSTRACT

The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells.

4.
Methods ; 83: 111-7, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25899044

ABSTRACT

The 3' untranslated region (3' UTR) of mRNA contains elements that play regulatory roles in polyadenylation, localization, translation efficiency, and mRNA stability. Despite the significance of the 3' UTR, there is no popular method for annotating 3' UTRs and for profiling their isoforms. Recently, poly(A)-position profiling by sequencing (3P-seq) and other similar methods have successfully been used to annotate 3' UTRs; however, they contain complex RNA-biochemical experimental steps, resulting in a low yield of products. In this paper, we propose heuristic and regression methods to estimate and quantify the usage of 3' UTRs with widely profiled RNA sequencing (RNA-seq) data. With this approach, the 3' UTR usage estimated from RNA-seq was found to be highly correlated to that of 3P-seq, and poly(A) cleavage signals of 3' UTRs were detected upstream of the predicted poly(A) cleavage sites. Our methods predicted greater number of 3' UTRs than 3P-seq, which allows the profiling of the 3' UTRs of most expressed genes in diverse cell-types, stages, and species. Hence, the computational RNA-seq method for the estimation of the 3' UTR landscape would be useful as a tool for studying not only the functional roles of 3' UTR but also gene regulation by 3' UTR in a cell type-specific context. The method is implemented in open-source code, which is available at http://big.hanyang.ac.kr/GETUTR.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation , Sequence Analysis, RNA/methods , Base Sequence , Gene Expression Profiling , Humans , Poly A/genetics , Polyadenylation , RNA, Messenger/genetics
5.
Cancer Lett ; 417: 47-57, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29247823

ABSTRACT

Available targeted therapies for esophageal squamous cell carcinoma (ESCC) are limited; thus, further genetic and epigenetic studies are needed. Recently, many long noncoding RNAs (lncRNAs) have been reported to be involved in various cancers. Here, we investigated whether the lncRNA LUCAT1 was related to the carcinogenesis of ESCC based on previous studies in lung cancer. LUCAT1 was significantly upregulated in ESCC cell lines and cancer tissue compared with normal cells and adjacent normal tissues. LUCAT1 knockdown reduced cell proliferation, induced apoptosis, and upregulated tumor-suppressor genes by reducing DNA methylation in KYSE-30 cells. Moreover, LUCAT1 siRNA reduced DNA methyltransferase 1 (DNMT1) protein levels without affecting transcription. Patients with high LUCAT1 expression had significantly lower survival rates than patients with low LUCAT1 expression. Our results thus suggest that LUCAT1 regulates the stability of DNMT1 and inhibits the expression of tumor suppressors through DNA methylation, leading to the formation and metastasis of ESCC. We identified LUCAT1 as a potential target for drug development and as a biomarker for ESCC.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , Enzyme Stability , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Female , Humans , Male , Middle Aged , RNA Interference , Ubiquitination
6.
Mol Cells ; 39(5): 367-74, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27137091

ABSTRACT

Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janus-faced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.


Subject(s)
RNA Isoforms/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , Animals , Computational Biology/methods , Genetic Variation , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL