Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Affiliation country
Publication year range
1.
J Biomech Eng ; 146(12)2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39196589

ABSTRACT

Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.


Subject(s)
Exoskeleton Device , Knee Joint , Humans , Child , Male , Knee Joint/physiopathology , Female , Gait , Knee/physiopathology , Biomechanical Phenomena , Adolescent , Young Adult , Gait Disorders, Neurologic/physiopathology , Range of Motion, Articular , Nervous System Diseases/physiopathology
2.
J Exp Biol ; 226(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36752161

ABSTRACT

Human locomotion is remarkably robust to environmental disturbances. Previous studies have thoroughly investigated how perturbations influence body dynamics and what recovery strategies are used to regain balance. Fewer studies have attempted to establish formal links between balance and the recovery strategies that are executed to regain stability. We hypothesized that there would be a strong relationship between the magnitude of imbalance and recovery strategy during perturbed walking. To test this hypothesis, we applied transient ground surface translations that varied in magnitude, direction and onset time while 11 healthy participants walked on a treadmill. We measured stability using integrated whole-body angular momentum (iWBAM) and recovery strategy using step placement. We found the strongest relationships between iWBAM and step placement in the frontal plane for earlier perturbation onset times in the perturbed step (R2=0.52, 0.50) and later perturbation onset times in the recovery step (R2=0.18, 0.25), while correlations were very weak in the sagittal plane (all R2≤0.13). These findings suggest that iWBAM influences step placement, particularly in the frontal plane, and that this influence is sensitive to perturbation onset time. Lastly, this investigation is accompanied by an open-source dataset to facilitate research on balance and recovery strategies in response to multifactorial ground surface perturbations, including 96 perturbation conditions spanning all combinations of three magnitudes, eight directions and four gait cycle onset times.


Subject(s)
Postural Balance , Walking , Humans , Biomechanical Phenomena/physiology , Postural Balance/physiology , Walking/physiology , Gait/physiology , Locomotion/physiology
3.
Annu Rev Control ; 55: 142-164, 2023.
Article in English | MEDLINE | ID: mdl-37635763

ABSTRACT

Lower-limb prostheses aim to restore ambulatory function for individuals with lower-limb amputations. While the design of lower-limb prostheses is important, this paper focuses on the complementary challenge - the control of lower-limb prostheses. Specifically, we focus on powered prostheses, a subset of lower-limb prostheses, which utilize actuators to inject mechanical power into the walking gait of a human user. In this paper, we present a review of existing control strategies for lower-limb powered prostheses, including the control objectives, sensing capabilities, and control methodologies. We separate the various control methods into three main tiers of prosthesis control: high-level control for task and gait phase estimation, mid-level control for desired torque computation (both with and without the use of reference trajectories), and low-level control for enforcing the computed torque commands on the prosthesis. In particular, we focus on the high- and mid-level control approaches in this review. Additionally, we outline existing methods for customizing the prosthetic behavior for individual human users. Finally, we conclude with a discussion on future research directions for powered lower-limb prostheses based on the potential of current control methods and open problems in the field.

4.
J Neuroeng Rehabil ; 17(1): 25, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075669

ABSTRACT

Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this 'metabolic cost barrier'. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.


Subject(s)
Exoskeleton Device , Running/physiology , Walking/physiology , Biomechanical Phenomena , Exoskeleton Device/trends , Humans , Lower Extremity/physiology , Male , Robotics/instrumentation
5.
N Engl J Med ; 369(13): 1237-42, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24066744

ABSTRACT

The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation--with seamless transitions between walking on level ground, stairs, and ramps--and of the ability to reposition the leg while the patient was seated.


Subject(s)
Artificial Limbs , Electromyography , Leg/innervation , Muscle, Skeletal/innervation , Nerve Transfer , Robotics , Walking/physiology , Accidents, Traffic , Adult , Amputation, Surgical/methods , Amputees/rehabilitation , Humans , Leg/physiology , Leg/surgery , Motorcycles , Muscle, Skeletal/physiology , Muscle, Skeletal/surgery , Posture
6.
JAMA ; 313(22): 2244-52, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26057285

ABSTRACT

IMPORTANCE: Some patients with lower leg amputations may be candidates for motorized prosthetic limbs. Optimal control of such devices requires accurate classification of the patient's ambulation mode (eg, on level ground or ascending stairs) and natural transitions between different ambulation modes. OBJECTIVE: To determine the effect of including electromyographic (EMG) data and historical information from prior gait strides in a real-time control system for a powered prosthetic leg capable of level-ground walking, stair ascent and descent, ramp ascent and descent, and natural transitions between these ambulation modes. DESIGN, SETTING, AND PARTICIPANTS: Blinded, randomized crossover clinical trial conducted between August 2012 and November 2013 in a research laboratory at the Rehabilitation Institute of Chicago. Participants were 7 patients with unilateral above-knee (n = 6) or knee-disarticulation (n = 1) amputations. All patients were capable of ambulation within their home and community using a passive prosthesis (ie, one that does not provide external power). INTERVENTIONS: Electrodes were placed over 9 residual limb muscles and EMG signals were recorded as patients ambulated and completed 20 circuit trials involving level-ground walking, ramp ascent and descent, and stair ascent and descent. Data were acquired simultaneously from 13 mechanical sensors embedded on the prosthesis. Two real-time pattern recognition algorithms, using either (1) mechanical sensor data alone or (2) mechanical sensor data in combination with EMG data and historical information from earlier in the gait cycle, were evaluated. The order in which patients used each configuration was randomized (1:1 blocked randomization) and double-blinded so patients and experimenters did not know which control configuration was being used. MAIN OUTCOMES AND MEASURES: The main outcome of the study was classification error for each real-time control system. Classification error is defined as the percentage of steps incorrectly predicted by the control system. RESULTS: Including EMG signals and historical information in the real-time control system resulted in significantly lower classification error (mean, 7.9% [95% CI, 6.1%-9.7%]) across a mean of 683 steps (range, 640-756 steps) compared with using mechanical sensor data only (mean, 14.1% [95% CI, 9.3%-18.9%]) across a mean of 692 steps (range, 631-775 steps), with a mean difference between groups of 6.2% (95% CI, 2.7%-9.7%] (P = .01). CONCLUSIONS AND RELEVANCE: In this study of 7 patients with lower limb amputations, inclusion of EMG signals and temporal gait information reduced classification error across ambulation modes and during transitions between ambulation modes. These preliminary findings, if confirmed, have the potential to improve the control of powered leg prostheses.


Subject(s)
Amputation, Surgical/rehabilitation , Artificial Limbs , Electromyography , Muscle, Skeletal/physiology , Adult , Aged , Cross-Over Studies , Electrodes , Female , Gait/physiology , Humans , Male , Middle Aged , Prosthesis Design , Single-Blind Method , Walking/physiology
7.
J Neuroeng Rehabil ; 11: 5, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24410948

ABSTRACT

Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks.


Subject(s)
Arm , Artificial Limbs , Pattern Recognition, Automated/methods , Prosthesis Design/methods , Amputees , Electromyography , Humans
8.
Sci Robot ; 9(88): eadi8852, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38507475

ABSTRACT

Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community.


Subject(s)
Exoskeleton Device , Robotics , Humans , Biomechanical Phenomena , Walking , Lower Extremity
9.
Ann Biomed Eng ; 52(8): 2013-2023, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38558352

ABSTRACT

Center of mass (COM) state, specifically in a local reference frame (i.e., relative to center of pressure), is an important variable for controlling and quantifying bipedal locomotion. However, this metric is not easily attainable in real time during human locomotion experiments. This information could be valuable when controlling wearable robotic exoskeletons, specifically for stability augmentation where knowledge of COM state could enable step placement planners similar to bipedal robots. Here, we explored the ability of simulated wearable sensor-driven models to rapidly estimate COM state during steady state and perturbed walking, spanning delayed estimates (i.e., estimating past state) to anticipated estimates (i.e., estimating future state). We used various simulated inertial measurement unit (IMU) sensor configurations typically found on lower limb exoskeletons and a temporal convolutional network (TCN) model throughout this analysis. We found comparable COM estimation capabilities across hip, knee, and ankle exoskeleton sensor configurations, where device type did not significantly influence error. We also found that anticipating COM state during perturbations induced a significant increase in error proportional to anticipation time. Delaying COM state estimates significantly increased accuracy for velocity estimates but not position estimates. All tested conditions resulted in models with R2 > 0.85, with a majority resulting in R2 > 0.95, emphasizing the viability of this approach. Broadly, this preliminary work using simulated IMUs supports the efficacy of wearable sensor-driven deep learning approaches to provide real-time COM state estimates for lower limb exoskeleton control or other wearable sensor-based applications, such as mobile data collection or use in real-time biofeedback.


Subject(s)
Exoskeleton Device , Wearable Electronic Devices , Humans , Locomotion/physiology , Male , Walking/physiology , Adult , Biomechanical Phenomena , Gait/physiology
10.
Ann Biomed Eng ; 52(3): 487-497, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37930501

ABSTRACT

Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject's static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.


Subject(s)
Walking , Wearable Electronic Devices , Humans , Biomechanical Phenomena , Lower Extremity , Gait
11.
IEEE Trans Biomed Eng ; 71(9): 2718-2727, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38619965

ABSTRACT

OBJECTIVE: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. METHODS: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. RESULTS: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p < 0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p < 0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p < 0.05) which was significantly higher than either modality individually (p < 0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p < 0.05). CONCLUSION: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. SIGNIFICANCE: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life.


Subject(s)
Electromyography , Hip Joint , Knee Joint , Humans , Electromyography/methods , Electromyography/instrumentation , Hip Joint/physiology , Knee Joint/physiology , Biomechanical Phenomena/physiology , Male , Adult , Female , Signal Processing, Computer-Assisted , Deep Learning , Young Adult , Wearable Electronic Devices , Walking/physiology , Shoes , Exoskeleton Device
12.
IEEE Trans Biomed Eng ; 70(1): 271-282, 2023 01.
Article in English | MEDLINE | ID: mdl-35788460

ABSTRACT

OBJECTIVE: Semi-active exoskeletons combining lightweight, low powered actuators and passive-elastic elements are a promising approach to portable robotic assistance during locomotion. Here, we introduce a novel semi-active hip exoskeleton concept and evaluate human walking performance across a range of parameters using a tethered robotic testbed. METHODS: We emulated semi-active hip exoskeleton (exo) assistance by applying a virtual torsional spring with a fixed rotational stiffness and an equilibrium angle established in terminal swing phase (i.e., via pre-tension into stance). We performed a 2-D sweep of spring stiffness x equilibrium position parameters (30 combinations) across walking speed (1.0, 1.3, and 1.6 m/s) and measured metabolic rate to identify device parameters for optimal metabolic benefit. RESULTS: At each speed, optimal exoskeleton spring settings provided a ∼10% metabolic benefit compared to zero-impedance (ZI). Higher walking speeds required higher exoskeleton stiffness and lower equilibrium angle for maximal metabolic benefit. Optimal parameters tuned to each individual (user-dependent) provided significantly larger metabolic benefit than the average-best settings (user-independent) at all speeds except the fastest (p = 0.021, p = 0.001, and p = 0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found significant correlation between changes in user's muscle activity and changes in metabolic rate due to exoskeleton assistance, especially for muscles crossing the hip joint. CONCLUSION: A semi-active hip exoskeleton with spring-parameters personalized to each user could provide metabolic benefit across functional walking speeds. Minimizing muscle activity local to the exoskeleton is a promising approach for tuning assistance on-line on a user-dependent basis.


Subject(s)
Exoskeleton Device , Humans , Walking Speed , Electric Impedance , Walking/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena/physiology
13.
Ann Biomed Eng ; 51(2): 410-421, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35963920

ABSTRACT

Hemiparetic gait due to stroke is characterized by an asymmetric gait due to weakness in the paretic lower limb. These inter-limb asymmetries increase the biomechanical demand and reduce walking speed, leading to reduced community mobility and quality of life. With recent progress in the field of wearable technologies, powered exoskeletons have shown great promise as a potential solution for improving gait post-stroke. While previous studies have adopted different exoskeleton control methodologies for restoring gait post-stroke, the results are highly variable due to limited understanding of the biomechanical effect of exoskeletons on hemiparetic gait. In this study, we investigated the effect of different hip exoskeleton assistance strategies on gait function and gait biomechanics of individuals post-stroke. We found that, compared to walking without a device, powered assistance from hip exoskeletons improved stroke participants' self-selected overground walking speed by 17.6 ± 2.5% and 11.1 ± 2.7% with a bilateral and unilateral assistance strategy, respectively (p < 0.05). Furthermore, both bilateral and unilateral assistance strategies significantly increased the paretic and non-paretic step length (p < 0.05). Our findings suggest that powered assistance from hip exoskeletons is an effective means to increase walking speed post-stroke and tuning the balance of assistance between non-paretic and paretic limbs (i.e., a bilateral strategy) may be most effective to maximize performance gains.


Subject(s)
Exoskeleton Device , Stroke Rehabilitation , Stroke , Humans , Quality of Life , Stroke Rehabilitation/methods , Gait , Stroke/complications , Walking , Biomechanical Phenomena
14.
IEEE Trans Biomed Eng ; 70(12): 3312-3320, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37262114

ABSTRACT

Genu recurvatum, or knee hyperextension, is a complex gait pattern with a variety of etiologies, and is often connected with knee weakness, lack of motor control, and spasticity. Because of the atypical forces placed on the soft tissues, early treatment or prevention of knee hyperextension may help prevent further degradation of the knee joint. In this study, we assessed the feasibility of a knee exoskeleton to mitigate hyperextension and increase swing range of motion in five children/adolescents who presented with unilateral genu recurvatum. Over the course of three visits, each participant practiced walking with the exoskeleton, which provided torque assistance during both stance and swing based on an impedance control law. In final validation trials, the exoskeleton was effective in reducing knee hyperextension (0.2 ± 4.7° average peak knee extension without exo to 9.9 ± 10.3° with exo) and improving swing range of motion by 14.0 ± 4.5° increase on average. However, while the exoskeleton was effective in normalizing the kinematics, it did not lead to improved spatio-temporal asymmetry measures. This work showcases a promising potential application of a robotic knee exoskeleton for improving the kinematic characteristics of genu recurvatum gait.


Subject(s)
Exoskeleton Device , Humans , Child , Adolescent , Feasibility Studies , Knee Joint , Knee , Walking , Gait , Biomechanical Phenomena , Range of Motion, Articular
15.
Ann Biomed Eng ; 50(6): 716-727, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35344119

ABSTRACT

Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Adult , Biomechanical Phenomena , Gait/physiology , Humans , Knee , Knee Joint/physiology
16.
IEEE Trans Biomed Eng ; 69(10): 3234-3242, 2022 10.
Article in English | MEDLINE | ID: mdl-35389859

ABSTRACT

Autonomous lower-limb exoskeletons must modulate assistance based on locomotion mode (e.g., ramp or stair ascent) to adapt to the corresponding changes in human biological joint dynamics. However, current mode classification strategies for exoskeletons often require user-specific tuning, have a slow update rate, and rely on additional sensors outside of the exoskeleton sensor suite. In this study, we introduce a deep convolutional neural network-based locomotion mode classifier for hip exoskeleton applications using an open-source gait biomechanics dataset with various wearable sensors. Our approach removed the limitations of previous systems as it is 1) subject-independent (i.e., no user-specific data), 2) capable of continuously classifying for smooth and seamless mode transitions, and 3) only utilizes minimal wearable sensors native to a conventional hip exoskeleton. We optimized our model, based on several important factors contributing to overall performance, such as transition label timing, model architecture, and sensor placement, which provides a holistic understanding of mode classifier design. Our optimized DL model showed a 3.13% classification error (steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), outperforming other machine learning-based benchmarks commonly practiced in the field (p<0.05). Furthermore, our multi-modal analysis indicated that our model can maintain high performance in different settings such as unseen slopes on stairs or ramps. Thus, our study presents a novel locomotion mode framework, capable of advancing robotic exoskeleton applications toward assisting community ambulation.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Gait , Humans , Locomotion , Walking
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4879-4882, 2021 11.
Article in English | MEDLINE | ID: mdl-34892302

ABSTRACT

The population of older adults experiences a significant degradation in musculoskeletal structure, which hinders daily physical activities. Standing up from a seated position is difficult for mobility-challenged individuals since a significant amount of knee extensor moment is required to lift the body's center of mass. One solution to reduce the required muscle work during sit-to-stand is to utilize a powered exoskeleton system that can provide relevant knee extension assistance. However, the optimal exoskeleton assistance strategy for maximal biomechanical benefit is unknown for sit-to-stand tasks. To answer this, we explored the effect of assistance timing using a bilateral robotic exoskeleton on the user's knee extensor muscle activation. Assistance was provided at both knee joints from 0% to 65% of the sit-to-stand movement, with a maximum torque occurring at four different timings (10%, 25%, 40%, and 55%). Our experiment with five able-bodied subjects showed that the maximal benefit in knee extensor activation, 19.3% reduction, occurred when the assistance timing was delayed relative to the user's biological joint moment. Among four assistance conditions, two conditions with each peak occurring at 25% and 40% significantly reduced the muscle activation relative to the no assistance condition (p < 0.05). Additionally, our study results showed a U-shaped trend (R2= 0.93) in the user's muscle activation where the global optimum occurred between 25% and 40% peak timing conditions, indicating that there is an optimal level of assistance timing in maximizing the exoskeleton benefit.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Aged , Biomechanical Phenomena , Humans , Knee Joint , Muscle, Skeletal
18.
IEEE Robot Autom Lett ; 6(2): 3491-3497, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34616899

ABSTRACT

We developed and validated a gait phase estimator for real-time control of a robotic hip exoskeleton during multimodal locomotion. Gait phase describes the fraction of time passed since the previous gait event, such as heel strike, and is a promising framework for appropriately applying exoskeleton assistance during cyclic tasks. A conventional method utilizes a mechanical sensor to detect a gait event and uses the time since the last gait event to linearly interpolate the current gait phase. While this approach may work well for constant treadmill walking, it shows poor performance when translated to overground situations where the user may change walking speed and locomotion modes dynamically. To tackle these challenges, we utilized a convolutional neural network-based gait phase estimator that can adapt to different locomotion mode settings to modulate the exoskeleton assistance. Our resulting model accurately predicted the gait phase during multimodal locomotion without any additional information about the user's locomotion mode, with a gait phase estimation RMSE of 5.04 ± 0.79%, significantly outperforming the literature standard (p < 0.05). Our study highlights the promise of translating exoskeleton technology to more realistic settings where the user can naturally and seamlessly navigate through different terrain settings.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4897-4900, 2021 11.
Article in English | MEDLINE | ID: mdl-34892306

ABSTRACT

Step length is a critical gait parameter that allows a quantitative assessment of gait asymmetry. Gait asymmetry can lead to many potential health threats such as joint degeneration, difficult balance control, and gait inefficiency. Therefore, accurate step length estimation is essential to understand gait asymmetry and provide appropriate clinical interventions or gait training programs. The conventional method for step length measurement relies on using foot-mounted inertial measurement units (IMUs). However, this may not be suitable for real-world applications due to sensor signal drift and the potential obtrusiveness of using distal sensors. To overcome this challenge, we propose a deep convolutional neural network-based step length estimation using only proximal wearable sensors (hip goniometer, trunk IMU, and thigh IMU) capable of generalizing to various walking speeds. To evaluate this approach, we utilized treadmill data collected from sixteen able-bodied subjects at different walking speeds. We tested our optimized model on the overground walking data. Our CNN model estimated the step length with an average mean absolute error of 2.89 ± 0.89 cm across all subjects and walking speeds. Since wearable sensors and CNN models are easily deployable in real-time, our study findings can provide personalized real-time step length monitoring in wearable assistive devices and gait training programs.


Subject(s)
Walking , Wearable Electronic Devices , Gait , Humans , Neural Networks, Computer , Walking Speed
20.
Ann Biomed Eng ; 49(3): 1000-1011, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33037511

ABSTRACT

Quantifying joint load in activities of daily life could lead to improvements in mobility for numerous people; however, current methods for assessing joint load are unsuitable for ubiquitous settings. The aim of this study is to demonstrate that joint acoustic emissions contain information to estimate this internal joint load in a potentially wearable implementation. Eleven healthy, able-bodied individuals performed ambulation tasks under varying speed, incline, and loading conditions while joint acoustic emissions and essential gait measures-electromyography, ground reaction forces, and motion capture trajectories-were collected. The gait measures were synthesized using a neuromuscular model to estimate internal joint contact force which was the target variable for subject-specific machine learning models (XGBoost) trained based on spectral, temporal, cepstral, and amplitude-based features of the joint acoustic emissions. The model using joint acoustic emissions significantly outperformed (p < 0.05) the best estimate without the sounds, the subject-specific average load (MAE = 0.31 ± 0.12 BW), for both seen (MAE = 0.08 ± 0.01 BW) and unseen (MAE = 0.21 ± 0.05 BW) conditions. This demonstrates that joint acoustic emissions contain information that correlates to internal joint contact force and that information is consistent such that unique cases can be estimated.


Subject(s)
Acoustics , Knee Joint/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Machine Learning , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL