Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Affiliation country
Publication year range
1.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Article in English | MEDLINE | ID: mdl-35820656

ABSTRACT

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Animals , Carbon , Cooking , Environmental Monitoring , Honduras , Humans , Particulate Matter/analysis , Rural Population , Soot
2.
BMC Med Res Methodol ; 21(1): 68, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33845785

ABSTRACT

RATIONALE: The spread of severe acute respiratory syndrome coronavirus-2 has suspended many non-COVID-19 related research activities. Where restarting research activities is permitted, investigators need to evaluate the risks and benefits of resuming data collection and adapt procedures to minimize risk. OBJECTIVES: In the context of the multicountry Household Air Pollution Intervention (HAPIN) trial conducted in rural, low-resource settings, we developed a framework to assess the risk of each trial activity and to guide protective measures. Our goal is to maximize the integrity of reseach aims while minimizing infection risk based on the latest scientific understanding of the virus. METHODS: We drew on a combination of expert consultations, risk assessment frameworks, institutional guidance and literature to develop our framework. We then systematically graded clinical, behavioral, laboratory and field environmental health research activities in four countries for both adult and child subjects using this framework. National and local government recommendations provided the minimum safety guidelines for our work. RESULTS: Our framework assesses risk based on staff proximity to the participant, exposure time between staff and participants, and potential viral aerosolization while performing the activity. For each activity, one of four risk levels, from minimal to unacceptable, is assigned and guidance on protective measures is provided. Those activities that can potentially aerosolize the virus are deemed the highest risk. CONCLUSIONS: By applying a systematic, procedure-specific approach to risk assessment for each trial activity, we were able to protect our participants and research team and to uphold our ability to deliver on the research commitments we have made to our staff, participants, local communities, and funders. This framework can be tailored to other research studies conducted in similar settings during the current pandemic, as well as potential future outbreaks with similar transmission dynamics. The trial is registered with clinicaltrials.gov NCT02944682 on October 26. 2016 .


Subject(s)
Biomedical Research/trends , COVID-19/prevention & control , Pandemics , Risk Assessment/methods , Communicable Disease Control/methods , Humans , Randomized Controlled Trials as Topic , Research Design
3.
Indoor Air ; 30(1): 24-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31539172

ABSTRACT

Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5 ) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , C-Reactive Protein/metabolism , Inhalation Exposure/statistics & numerical data , Adult , Air Pollution , Biomarkers/blood , Colorado , Cooking/methods , Cooking/statistics & numerical data , Female , Humans , Inhalation Exposure/analysis , Middle Aged , Nicaragua
4.
Int J Environ Health Res ; 30(2): 160-173, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30760020

ABSTRACT

Household air pollution from combustion of solid fuels is an important risk factor for morbidity and mortality, causing an estimated 2.6 million premature deaths globally in 2016. Self-reported health symptoms are a meaningful measure of quality of life, however, few studies have evaluated symptoms and quantitative measures of exposure to household air pollution. We assessed the cross-sectional association of self-reported symptoms and exposures to household air pollution among women in rural Honduras using stove type (traditional [n = 76]; cleaner-burning Justa [n = 74]) and 24-hour average personal and kitchen fine particulate matter (PM2.5) concentrations. The odds of prevalent symptoms were higher among women using traditional stoves vs Justa stoves (e.g. headache: odds ratio = 2.23; 95% confidence interval = 1.13-4.39). Associations between symptoms and measured PM2.5 were generally consistent with the null. These results add to the evidence suggesting reduced exposures and better health-related quality of life among women using cleaner-burning biomass stoves.


Subject(s)
Air Pollutants/adverse effects , Air Pollution, Indoor/adverse effects , Cooking , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Respiratory Tract Diseases/epidemiology , Rural Population/statistics & numerical data , Vision Disorders/epidemiology , Adult , Cross-Sectional Studies , Female , Honduras/epidemiology , Humans , Middle Aged , Prevalence , Respiratory Tract Diseases/chemically induced , Self Report , Vision Disorders/chemically induced
5.
Environ Res ; 170: 46-55, 2019 03.
Article in English | MEDLINE | ID: mdl-30557691

ABSTRACT

BACKGROUND: Household air pollution from cooking with solid fuels affects nearly 3 billion people worldwide and is responsible for an estimated 2.5 million premature deaths and 77 million disability-adjusted life years annually. Investigating the effect of household air pollution on indicators of cardiometabolic disease, such as metabolic syndrome, can help clarify the pathways between this widespread exposure and cardiovascular diseases, which are increasing in low- and middle-income countries. METHODS: Our cross-sectional study of 150 women in rural Honduras (76 with traditional stoves and 74 with cleaner-burning Justa stoves) explored the effect of household air pollution exposure on cardiovascular disease risk factors. Household air pollution was measured by stove type and 24-h average kitchen and personal fine particulate matter [PM2.5] mass and black carbon concentrations. Health endpoints included non-fasting total cholesterol, high-density lipoprotein, calculated low-density lipoprotein, triglycerides, waist circumference to indicate abdominal obesity, and presence of metabolic syndrome (defined by current modified international guidelines: waist circumference ≥ 80 cm plus any two of the following: triglycerides > 200 mg/dL, HDL < 50 mg/dL, systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 85 mmHg, or glycated hemoglobin > 5.6%). RESULTS: Forty percent of women met the criteria for metabolic syndrome. The prevalence ratio [PR] for metabolic syndrome (versus normal) per interquartile range increase in kitchen PM2.5 and kitchen black carbon was 1.16 (95% confidence interval [CI]: 1.01-1.34) per 312 µg/m3 increase in PM2.5, and 1.07 (95% CI: 1.03-1.12) per 73 µg/m3 increase in black carbon. There is suggestive evidence of a stronger effect in women ≥ 40 years of age compared to women < 40 (p-value for interaction = 0.12 for personal PM2.5). There was no evidence of associations between all other exposure metrics and health endpoints. CONCLUSIONS: The prevalence of metabolic syndrome among our study population was high compared to global estimates. We observed a suggestive effect between metabolic syndrome and exposure to household air pollution. These results for metabolic syndrome may be driven by specific syndrome components, such as blood pressure. Longitudinal research with repeated health and exposure measures is needed to better understand the link between household air pollution and indicators of cardiometabolic disease risk.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Cooking , Lipids/blood , Metabolic Syndrome/epidemiology , Waist Circumference , Adult , Air Pollution , Animals , Biomass , Cattle , Cross-Sectional Studies , Family Characteristics , Female , Honduras/epidemiology , Humans , Particulate Matter , Women
6.
Indoor Air ; 29(1): 130-142, 2019 01.
Article in English | MEDLINE | ID: mdl-30195255

ABSTRACT

Growing evidence links household air pollution exposure from biomass cookstoves with elevated blood pressure. We assessed cross-sectional associations of 24-hour mean concentrations of personal and kitchen fine particulate matter (PM2.5 ), black carbon (BC), and stove type with blood pressure, adjusting for confounders, among 147 women using traditional or cleaner-burning Justa stoves in Honduras. We investigated effect modification by age and body mass index. Traditional stove users had mean (standard deviation) personal and kitchen 24-hour PM2.5 concentrations of 126 µg/m3 (77) and 360 µg/m3 (374), while Justa stove users' exposures were 66 µg/m3 (38) and 137 µg/m3 (194), respectively. BC concentrations were similarly lower among Justa stove users. Adjusted mean systolic blood pressure was 2.5 mm Hg higher (95% CI, 0.7-4.3) per unit increase in natural log-transformed kitchen PM2.5 concentration; results were stronger among women of 40 years or older (5.2 mm Hg increase, 95% CI, 2.3-8.1). Adjusted odds of borderline high and high blood pressure (categorized) were also elevated (odds ratio = 1.5, 95% CI, 1.0-2.3). Some results included null values and are suggestive. Results suggest that reduced household air pollution, even when concentrations exceed air quality guidelines, may help lower cardiovascular disease risk, particularly among older subgroups.


Subject(s)
Air Pollution, Indoor/adverse effects , Blood Pressure/physiology , Hypertension/chemically induced , Adult , Biomass , Body Mass Index , Cooking , Cross-Sectional Studies , Energy-Generating Resources , Environmental Monitoring , Female , Honduras/epidemiology , Humans , Hypertension/epidemiology , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Rural Population
7.
BMC Public Health ; 19(1): 903, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31286921

ABSTRACT

BACKGROUND: Growing evidence links household air pollution exposure from biomass-burning cookstoves to cardiometabolic disease risk. Few randomized controlled interventions of cookstoves (biomass or otherwise) have quantitatively characterized changes in exposure and indicators of cardiometabolic health, a growing and understudied burden in low- and middle-income countries (LMICs). Ideally, the solution is to transition households to clean cooking, such as with electric or liquefied petroleum gas stoves; however, those unable to afford or to access these options will continue to burn biomass for the foreseeable future. Wood-burning cookstove designs such as the Justa (incorporating an engineered combustion zone and chimney) have the potential to substantially reduce air pollution exposures. Previous cookstove intervention studies have been limited by stove types that did not substantially reduce exposures and/or by low cookstove adoption and sustained use, and few studies have incorporated community-engaged approaches to enhance the intervention. METHODS/DESIGN: We conducted an individual-level, stepped-wedge randomized controlled trial with the Justa cookstove intervention in rural Honduras. We enrolled 230 female primary cooks who were not pregnant, non-smoking, aged 24-59 years old, and used traditional wood-burning cookstoves at baseline. A community advisory board guided survey development and communication with participants, including recruitment and retention strategies. Over a 3-year study period, participants completed 6 study visits approximately 6 months apart. Half of the women received the Justa after visit 2 and half after visit 4. At each visit, we measured 24-h gravimetric personal and kitchen fine particulate matter (PM2.5) concentrations, qualitative and quantitative cookstove use and adoption metrics, and indicators of cardiometabolic health. The primary health endpoints were blood pressure, C-reactive protein, and glycated hemoglobin. Overall study goals are to explore barriers and enablers of new cookstove adoption and sustained use, compare health endpoints by assigned cookstove type, and explore the exposure-response associations between PM2.5 and indicators of cardiometabolic health. DISCUSSION: This trial, utilizing an economically feasible, community-vetted cookstove and evaluating endpoints relevant for the major causes of morbidity and mortality in LMICs, will provide critical information for household air pollution stakeholders globally. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02658383 , posted January 18, 2016, field work completed May 2018. Official title, "Community-Based Participatory Research: A Tool to Advance Cookstove Interventions." Principal Investigator Maggie L. Clark, Ph.D. Last update posted July 12, 2018.


Subject(s)
Air Pollution, Indoor/prevention & control , Cardiovascular Diseases/prevention & control , Cooking/methods , Environmental Exposure/prevention & control , Household Articles , Adult , Air Pollution, Indoor/adverse effects , Biomass , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Family Characteristics , Female , Honduras , Humans , Middle Aged , Particulate Matter/analysis , Pregnancy , Randomized Controlled Trials as Topic , Rural Population , Young Adult
8.
Environ Res Health ; 2(3): 035007, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38962451

ABSTRACT

Air pollution exposure is associated with adverse respiratory health outcomes. Evidence from occupational and community-based studies also suggests agricultural pesticides have negative health impacts on respiratory health. Although populations are exposed to multiple inhalation hazards simultaneously, multidomain mixtures (e.g. environmental and chemical pollutants of different classes) are rarely studied. We investigated the association of ambient air pollution-pesticide exposure mixtures with urinary leukotriene E4 (LTE4), a respiratory inflammation biomarker, for 75 participants in four Central California communities over two seasons. Exposures included three criteria air pollutants estimated via the Community Multiscale Air Quality model (fine particulate matter, ozone, and nitrogen dioxide) and urinary metabolites of organophosphate (OP) pesticides (total dialkyl phosphates (DAPs), total diethyl phosphates (DE), and total dimethyl phosphates (DM)). We implemented multiple linear regression models to examine associations in single pollutant models adjusted for age, sex, asthma status, occupational status, household member occupational status, temperature, and relative humidity, and evaluated whether associations changed seasonally. We then implemented Bayesian kernel machine regression (BKMR) to analyse these criteria air pollutants, DE, and DM as a mixture. Our multiple linear regression models indicated an interquartile range (IQR) increase in total DAPs was associated with an increase in urinary LTE4 in winter (ß: 0.04, 95% CI: [0.01, 0.07]). Similarly, an IQR increase in total DM was associated with an increase in urinary LTE4 in winter (ß:0.03, 95% CI: [0.004, 0.06]). Confidence intervals for all criteria air pollutant effect estimates included the null value. BKMR analysis revealed potential non-linear interactions between exposures in our air pollution-pesticide mixture, but all confidence intervals contained the null value. Our analysis demonstrated a positive association between OP pesticide metabolites and urinary LTE4 in a low asthma prevalence population and adds to the limited research on the joint effects of ambient air pollution and pesticides mixtures on respiratory health.

9.
Energy Sustain Dev ; 802024 Jun.
Article in English | MEDLINE | ID: mdl-38799418

ABSTRACT

The disease burden related to air pollution from traditional solid-fuel cooking practices in low- and middle-income countries impacts millions of people globally. Although the use of liquefied petroleum gas (LPG) fuel for cooking can meaningfully reduce household air pollution concentrations, major barriers, including affordability and accessibility, have limited widespread adoption. Using a randomized controlled trial, our objective was to evaluate the association between the cost and use of LPG among 23 rural Rwandan households. We provided a 2-burner LPG stove with accessories and incorporated a "pay-as-you-go" (PAYG) LPG service model that included fuel delivery. PAYG services remove the large up-front cost of cylinder refills by integrating "smart meter" technology that allows participants to pay in incremental amounts, as needed. We assigned three randomized discounted prices for LPG to each household at ~4-week intervals over a 12-week period. We modeled the relationship between randomized PAYG LPG price and use (standardized to monthly periods), analyzing effect modification by relative household wealth. A 1000 Rwandan Franc (about 1 USD at the time of the study) increase in LPG price/kg was associated with a 4.1 kg/month decrease in use (95% confidence interval [CI]: -6.7, -1.6; n=69 observations). Wealth modified this association; we observed a 9.7 kg/month reduction (95% CI: -14.8, -4.5) among wealthier households and a 2.5 kg/month reduction (95% CI: -5.3, 0.3) among lower-wealth households (p-interaction=0.01). The difference in price sensitivity was driven by higher LPG use among wealthier households at more heavily discounted prices; from an 80% to 10% discount, wealthy households used 17.5 to 5.3 kg/month and less wealthy households used 6.2 to 3.1 kg/month. Our pilot-level experimental evidence of PAYG LPG in a rural low-resource setting suggests that further exploration of subsidized pricing varied by household wealth is needed to ensure future policy initiatives can achieve targets without exacerbating inequities.

10.
Environ Int ; 190: 108815, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38889623

ABSTRACT

BACKGROUND: Anemia is common in low- and middle-income countries (LMICs), causing significant health issues and social burdens. Exposure to household air pollution from using biomass fuels for cooking and heating has been associated with anemia, but the exposure-response association has not been studied. OBJECTIVES: We evaluated the associations between personal exposure to air pollution and both hemoglobin levels and anemia prevalence among pregnant women in a multi-country randomized controlled trial. METHODS: We studied 3,163 pregnant women aged 18-35 years with 9-20 weeks of gestation, recruited as part of the Household Air Pollution Intervention Network (HAPIN) randomized controlled trial in Guatemala, India, Peru, and Rwanda. We assessed 24-hour personal exposures to fine particulate matter (PM2.5), black carbon (BC), and carbon monoxide (CO), and measured hemoglobin levels at baseline (15 ± 3 weeks gestation). Linear and logistic regression models were used to examine the associations of measured pollutants with hemoglobin levels and anemia prevalence, adjusting for confounding. RESULTS: Single-pollutant models showed associations of CO with higher hemoglobin levels and lower anemia prevalence. Bipollutant models involving CO and PM2.5 also revealed that an interquartile range (IQR) increase in CO concentrations (2.26 ppm) was associated with higher hemoglobin levels [ß = 0.04; 95 % confidence interval (CI): 0.01, 0.07], and a lower odds of anemia prevalence [odds ratios (OR) = 0.90; 95 % CI: 0.83, 0.98]. PM2.5 was inversely related to hemoglobin and positively associated with anemia, but results were not statistically significant at the 0.05 alpha level. County-specific results showed that 3 of 4 countries showed a similar association between CO and hemoglobin. We found no association of BC levels with hemoglobin levels or with anemia prevalence. CONCLUSION: Our findings suggest that exposure to CO is associated with higher hemoglobin and lower anemia prevalence among pregnant women, whereas PM2.5 showed the opposite associations.

11.
Matern Child Health J ; 17(1): 172-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22362260

ABSTRACT

The objectives of this study were to ascertain the prevalence and potential sources of lead exposure among pregnant women residing in a socially-disadvantaged immigrant community in Albuquerque, New Mexico. Pregnant women (n = 140) receiving prenatal care through a community clinic participated in a structured interview and screening to measure their blood lead levels (BLLs). Potential sources of lead exposure were ascertained by the CDC and New Mexico Department of Health questionnaires. Self-reported risk factors were examined as predictors of BLLs using multiple linear regression and partial least squares discriminant analysis. Most patients were Spanish-speaking (88.6%), Latina (95%), foreign-born (87.1%), lacked health insurance (86.4%), and had a high school education or lower (84.3%). While risk factors were prevalent in this population, only three women (2.1%) had BLLs ≥3 µg/dL. Results of multivariate analyses demonstrated that pica symptoms in pregnancy, history of elevated BLLs before pregnancy, use of non-commercial pottery, and living in older houses were important predictors of elevated BLLs. Although the prevalence of other risk factors relevant to immigrant communities (i.e., use of traditional/folk remedies and cosmetics, seasonings and food products from Mexico) was high, they were not predictive of elevated BLLs. Clinics providing prenatal care to immigrant Hispanic communities should carefully assess patients' pica symptoms, use of non-commercial pottery, and a history of elevated BLLs. Moreover, additional efforts need to focus on the development of screening questionnaires which better reflect exposures of concern in this population.


Subject(s)
Hispanic or Latino/statistics & numerical data , Lead Poisoning/etiology , Maternal Behavior/ethnology , Maternal Exposure/statistics & numerical data , Adolescent , Adult , Cross-Sectional Studies , Emigrants and Immigrants , Female , Humans , Interviews as Topic , Lead Poisoning/epidemiology , Lead Poisoning/prevention & control , Mass Screening , Multivariate Analysis , New Mexico/epidemiology , Pica , Pregnancy , Pregnant Women , Prevalence , Regression Analysis , Risk Factors , Socioeconomic Factors , Surveys and Questionnaires , Young Adult
12.
Sci Total Environ ; 881: 163362, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37059148

ABSTRACT

Organophosphate (OP) pesticides are widely used in California for agricultural pest and weed control despite their well-documented adverse health effects among infants, children, and adults. We sought to identify factors affecting urinary OP metabolites among families living in high-exposure communities. Our study included 80 children and adults who lived within 61 m (200 ft) of agricultural fields in the Central Valley of California in January and June 2019, which are pesticide non-spraying and spraying seasons, respectively. We collected one urine sample per participant during each visit to measure dialkyl phosphate (DAP) metabolites; these were coupled with in-person surveys to identify health, household, sociodemographic, pesticide exposure, and occupational risk factors. We used a data-driven, best subsets regression approach to identify key factors that influenced urinary DAPs. Participants were mostly Hispanic/Latino(a) (97.5 %), over half were female (57.5 %), and most households reported having a member who worked in agriculture (70.6 %). Among the 149 urine samples suitable for analysis, DAP metabolites were detected in 48.0 % and 40.5 % of samples during January and June, respectively. Total diethyl alkylphosphates (EDE) were only detected in 4.7 % (n = 7) of samples, but total dimethyl alkylphosphates (EDM) were detected in 41.6 % (n = 62) of samples. No differences were observed in urinary DAP levels by visit month or by occupational exposure to pesticides. Best subsets regression identified several individual- and household-level variables that influenced both urinary EDM and total DAPs: the number of years spent living at the current address, household use of chemical products to control mice/rodents, and seasonal employment status. Among adults only, we identified educational attainment (for total DAPs) and age category (for EDM) as significant factors. Our study found consistent urinary DAP metabolites among participants, regardless of spraying season, and identified potential mitigating factors that members of vulnerable populations can implement to protect their health against OP exposure.


Subject(s)
Biomarkers , Environmental Exposure , Organophosphates , Pesticides , California , Humans , Agriculture , Organophosphates/urine , Longitudinal Studies , Biomarkers/urine , Pesticides/analysis , Dust/analysis , Male , Female , Socioeconomic Factors , Young Adult , Adult , Middle Aged
13.
Article in English | MEDLINE | ID: mdl-35055689

ABSTRACT

Organophosphate (OP) pesticides are associated with numerous adverse health outcomes. Pesticide use data are available for California from the Pesticide Use Report (PUR), but household- and individual-level exposure factors have not been fully characterized to support its refinement as an exposure assessment tool. Unique exposure pathways, such as proximity to agricultural operations and direct occupational contact, further complicate pesticide exposure assessment among agricultural communities. We sought to identify influencing factors of pesticide exposure to support future exposure assessment and epidemiological studies. Household dust samples were collected from 28 homes in four California agricultural communities during January and June 2019 and were analyzed for the presence of OPs. Factors influencing household OPs were identified by a data-driven model via best subsets regression. Key factors that impacted dust OP levels included household cooling strategies, secondary occupational exposure to pesticides, and geographic location by community. Although PUR data demonstrate seasonal trends in pesticide application, this study did not identify season as an important factor, suggesting OP persistence in the home. These results will help refine pesticide exposure assessment for future studies and highlight important gaps in the literature, such as our understanding of pesticide degradation in an indoor environment.


Subject(s)
Dust , Organophosphates , Pesticides , Agriculture , Dust/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Housing , Humans , Organophosphates/analysis , Organophosphates/toxicity , Pesticides/analysis , Pesticides/toxicity
14.
Environ Sci Technol Lett ; 9(6): 538-542, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-38037640

ABSTRACT

Introduction: Household air pollution from cooking-related biomass combustion remains a leading risk factor for global health. Black carbon (BC) is an important component of particulate matter (PM) in household air pollution. We evaluated the impact of the engineered, wood-burning Justa stove intervention on BC concentrations. Methods: We conducted a 3-year stepped-wedge randomized controlled trial with 6 repeated visits among 230 female primary cooks in rural Honduras. Participants used traditional stoves at baseline and were randomized to receive the Justa after visit 2 or after visit 4. At each visit, we measured 24-hour gravimetric personal and kitchen fine PM (PM2.5) concentrations and estimated BC mass concentrations (Sootscan Transmissometer). We conducted intent-to-treat analyses using linear mixed models with natural log-transformed 24-hour personal and kitchen BC. Results: BC concentrations were reduced for households assigned to the Justa vs. traditional stoves: e.g., personal BC geometric mean (GSD), 3.6 µg/m3 (6.4) vs. 11.5 µg/m3 (4.6), respectively. Following the intervention, we observed 53% (95% CI: 35-65%) lower geometric mean personal BC concentrations and 76% (95% CI: 66-83%) lower geometric mean kitchen BC concentrations. Conclusions: The Justa stove intervention substantially reduced BC concentrations, mitigating household air pollution and potentially benefitting human and climate health.

15.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Article in English | MEDLINE | ID: mdl-35259686

ABSTRACT

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , C-Reactive Protein , Cooking/methods , Cross-Sectional Studies , Female , Honduras/epidemiology , Humans , Particulate Matter/analysis , Wood/analysis , Wood/chemistry
16.
J Reprod Med ; 56(7-8): 339-43, 2011.
Article in English | MEDLINE | ID: mdl-21838165

ABSTRACT

OBJECTIVE: To examine information sources about the safety of medications during pregnancy among predominantly Latina pregnant women. STUDY DESIGN: Consecutively chosen pregnant women (n = 404) attending the University of New Mexico clinics were offered participation and interviewed by a bilingual interviewer. RESULTS: Patient-initiated questions about the safety of medications in pregnancy were addressed most frequently to prenatal care providers (62.1%) and family members (25.2%). The Internet, books and clinic pamphlets/brochures were the most frequent self-identified sources of information. Among the 181 women with medical conditions (44.8%), education, marital status and parity were important predictors of information-seeking behavior. Specifically, women with higher education were 3.0 times (95% CI 1.2-7.5) more likely to seek advice than women with less than a high school education. Single (OR = 0.3; 95% CI 0.1-0.7) and multiparous (OR = 0.4; 95% CI 0.1-0.9) women were less likely to seek advice than married and nulliparous patients, respectively. CONCLUSION: Prenatal care providers need to more actively engage pregnant women in a decision-making process and discuss risks and benefits of medication management during pregnancy.


Subject(s)
Attitude to Health/ethnology , Drug Therapy/statistics & numerical data , Hispanic or Latino/statistics & numerical data , Phytotherapy/statistics & numerical data , Pregnancy Complications/drug therapy , Pregnancy Complications/ethnology , Self Care/statistics & numerical data , Adult , Drug-Related Side Effects and Adverse Reactions , Female , Health Behavior/ethnology , Hispanic or Latino/psychology , Humans , New Mexico/epidemiology , Phytotherapy/adverse effects , Polypharmacy , Pregnancy , Pregnancy Complications/psychology , Prenatal Exposure Delayed Effects/prevention & control , Surveys and Questionnaires , Young Adult
17.
Sci Total Environ ; 767: 144369, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33429278

ABSTRACT

TRIAL DESIGN: We evaluated the impact of a biomass stove intervention on fine particulate matter (PM2.5) concentrations using an individual-level, stepped-wedge randomized trial. METHODS: We enrolled 230 women in rural Honduran households using traditional biomass stoves and randomly allocated them to one of two study arms. The Justa stove, the study intervention, was locally-sourced, wood-burning, and included an engineered combustion chamber and chimney. At each of 6 visits over 3 years, we measured 24-hour gravimetric personal and kitchen PM2.5 concentrations. Half of the households received the intervention after Visit 2 and half after Visit 4. We conducted intent-to-treat analyses to evaluate the intervention effect using linear mixed models with log-transformed kitchen or personal PM2.5 (separately) as the dependent variable, adjusting for time. We also compared PM2.5 concentrations to World Health Organization (WHO) guidelines. RESULTS: Arms 1 and 2 each had 115 participants with 664 and 632 completed visits, respectively. Median 24-hour average personal PM2.5 exposures were 81 µg/m3 (25th-75th percentile: 50-141 µg/m3) for the traditional stove condition (n=622) and 43 µg/m3 (25th-75th percentile: 27-73 µg/m3) for the Justa stove condition (n=585). Median 24-hour average kitchen concentrations were 178 µg/m3 (25th-75th percentile: 69-440 µg/m3; n=629) and 53 µg/m3 (25th-75th percentile: 29-103 µg/m3; n=578) for the traditional and Justa stove conditions, respectively. The Justa intervention resulted in a 32% reduction in geometric mean personal PM2.5 (95% confidence interval [CI]: 20-43%) and a 56% reduction (95% CI: 46-65%) in geometric mean kitchen PM2.5. During rainy and dry seasons, 53% and 41% of participants with the Justa intervention had 24-hour average personal PM2.5 exposures below the WHO interim target-3 guideline (37.5 µg/m3), respectively. CONCLUSION: The Justa stove intervention substantially lowered personal and kitchen PM2.5 and may be a provisional solution that is feasible for Latin American communities where cleaner fuels may not be available, affordable, or acceptable for some time. Clinicaltrials.gov: NCT02658383.


Subject(s)
Air Pollution, Indoor , Particulate Matter , Air Pollution, Indoor/analysis , Cooking , Female , Honduras , Humans , Particulate Matter/analysis , Rural Population , Wood/chemistry
18.
Environ Pollut ; 258: 113697, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31875572

ABSTRACT

Cooking and heating with solid fuels results in high levels of household air pollutants, including particulate matter (PM); however, limited data exist for size fractions smaller than PM2.5 (diameter less than 2.5 µm). We collected 24-h time-resolved measurements of PM2.5 (n = 27) and particle number concentrations (PNC, average diameter 10-700 nm) (n = 44; 24 with paired PM2.5 and PNC) in homes with wood-burning traditional and Justa (i.e., with an engineered combustion chamber and chimney) cookstoves in rural Honduras. The median 24-h PM2.5 concentration (n = 27) was 79 µg/m3 (interquartile range [IQR]: 44-174 µg/m3); traditional (n = 15): 130 µg/m3 (IQR: 48-250 µg/m3); Justa (n = 12): 66 µg/m3 (IQR: 44-97 µg/m3). The median 24-h PNC (n = 44) was 8.5 × 104 particles (pt)/cm3 (IQR: 3.8 × 104-1.8 × 105 pt/cm3); traditional (n = 27): 1.3 × 105 pt/cm3 (IQR: 3.3 × 104-2.0 × 105 pt/cm3); Justa (n = 17): 6.3 × 104 pt/cm3 (IQR: 4.0 × 104-1.2 × 105 pt/cm3). The 24-h average PM2.5 and particle number concentrations were correlated for the full sample of cookstoves (n = 24, Spearman ρ: 0.83); correlations between PM2.5 and PNC were higher in traditional stove kitchens (n = 12, ρ: 0.93) than in Justa stove kitchens (n = 12, ρ: 0.67). The 24-h average concentrations of PM2.5 and PNC were also correlated with the maximum average concentrations during shorter-term averaging windows of one-, five-, 15-, and 60-min, respectively (Spearman ρ: PM2.5 [0.65, 0.85, 0.82, 0.71], PNC [0.74, 0.86, 0.88, 0.86]). Given the moderate correlations observed between 24-h PM2.5 and PNC and between 24-h and the shorter-term averaging windows within size fractions, investigators may need to consider cost-effectiveness and information gained by measuring both size fractions for the study objective. Further evaluations of other stove and fuel combinations are needed.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cooking/instrumentation , Particulate Matter/analysis , Biomass , Environmental Monitoring , Honduras , Humans
19.
Article in English | MEDLINE | ID: mdl-31881652

ABSTRACT

BACKGROUND: Globally, an estimated 3.6 billion people rely on solid fuels for cooking over open fires or in simple cookstoves. Universal access to clean cooking fuels and technology by 2030 is a United Nations' Sustainable Development Goal. METHODS: The Mediae Company created a home makeover television and radio show, Shamba Chef, designed to promote modern, cleaner, safer cooking methods and improved nutrition in Kenya, which reached 5 million homes in late 2017. This was accompanied by a mobile phone platform called iChef. Researchers evaluated the effects of Shamba Chef on cookstove purchase, use, and attitudes, beliefs, and intentions. RESULTS: The study revealed dose-response effects of Shamba Chef exposure on several key outcomes. Exposure to the program was associated with an awareness of improved biomass stoves (OR 4.4; 95% CI 2.8 to 6.9), and aspirations to own an improved biomass stove (OR 2.0; 95% CI 1.4 to 2.9). Receiving information about modern stoves from two or more sources generated greater awareness of liquefied petroleum gas (LPG) stoves (OR 2.0; 95% CI 1.3 to 3.1). The qualitative study revealed that Shamba Chef explained how the stoves worked, communicated their benefits, and encouraged participants to trust and purchase those cookstoves. CONCLUSION: Shamba Chef was successful in influencing determinants of cookstove purchase and use, and there is evidence from the qualitative study that it influenced the purchase and use of improved biomass stoves.


Subject(s)
Air Pollution, Indoor/prevention & control , Consumer Behavior , Cooking/methods , Household Articles , Adult , Attitude , Female , Fires , Health Knowledge, Attitudes, Practice , Household Products , Humans , Kenya , Nutritional Sciences , Technology , Television
20.
Aerosol Sci Technol ; 53(3): 268-275, 2019.
Article in English | MEDLINE | ID: mdl-31588161

ABSTRACT

Particulate matter (PM) air pollution is associated with human morbidity and mortality. Measuring PM oxidative potential has been shown to provide a predictive measurement between PM exposure and adverse health impacts. The dithiothreitol (DTT) assay is commonly used to measure the oxidative potential of PM2.5 (PM less than 2.5 µm aerodynamic diameter). In the common, kinetic form of this assay, the decay of DTT is quantified over time (indirectly) using 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, Ellman's reagent) via UV/vis absorbance spectroscopy. The loss of DTT can also be quantified directly using electrochemical detection. The objectives of this work were (1) to evaluate the electrochemical assay, using commercially available equipment, relative to the UV/vis absorbance assay, and (2) to apply the electrochemical method to a large (>100) number of PM2.5 aerosol filter samples. Also presented here is the comparison an end-point assay to the kinetic assay, in an attempt to reduce the time, labor, and materials neccssary to quantify PM oxidative potential. The end-point, electrochemical assay gave comparable results to the UV/vis absorbance assay for PM filter sample analysis. Finally, high filter mass loadings (higher than about 0.5 µg PM per mm2 filter) lead to sub-optimal DTT assay performance, which suggests future studies should limit particle mass loadings on filters.

SELECTION OF CITATIONS
SEARCH DETAIL