Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Diabetes ; 68(12): 2235-2246, 2019 12.
Article in English | MEDLINE | ID: mdl-31506345

ABSTRACT

Extreme obesity (EO) (BMI >50 kg/m2) is frequently associated with neuropsychiatric disease (NPD). As both EO and NPD are heritable central nervous system disorders, we assessed the prevalence of protein-truncating variants (PTVs) and copy number variants (CNVs) in genes/regions previously implicated in NPD in adults with EO (n = 149) referred for weight loss/bariatric surgery. We also assessed the prevalence of CNVs in patients referred to University College London Hospital (UCLH) with EO (n = 218) and obesity (O) (BMI 35-50 kg/m2; n = 374) and a Swedish cohort of participants from the community with predominantly O (n = 161). The prevalence of variants was compared with control subjects in the Exome Aggregation Consortium/Genome Aggregation Database. In the discovery cohort (high NPD prevalence: 77%), the cumulative PTV/CNV allele frequency (AF) was 7.7% vs. 2.6% in control subjects (odds ratio [OR] 3.1 [95% CI 2-4.1]; P < 0.0001). In the UCLH EO cohort (intermediate NPD prevalence: 47%), CNV AF (1.8% vs. 0.9% in control subjects; OR 1.95 [95% CI 0.96-3.93]; P = 0.06) was lower than the discovery cohort. CNV AF was not increased in the UCLH O cohort (0.8%). No CNVs were identified in the Swedish cohort with no NPD. These findings suggest that PTV/CNVs, in genes/regions previously associated with NPD, may contribute to NPD in patients with EO.


Subject(s)
DNA Copy Number Variations , Genetic Predisposition to Disease , Mental Disorders/genetics , Obesity/genetics , Adult , Comorbidity , Female , Gene Frequency , Genetic Association Studies , Humans , Male , Mental Disorders/epidemiology , Middle Aged , Obesity/epidemiology , Polymorphism, Single Nucleotide , Sweden , Exome Sequencing
4.
Obes Surg ; 24(2): 241-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23996294

ABSTRACT

Laparoscopic Roux-en-Y gastric bypass (LRYGBP) reduces appetite and induces significant and sustainable weight loss. Circulating gut hormones changes engendered by LRYGBP are implicated in mediating these beneficial effects. Laparoscopic sleeve gastrectomy (LSG) is advocated as an alternative to LRYGBP, with comparable short-term weight loss and metabolic outcomes. LRYGBP and LSG are anatomically distinct procedures causing differential entero-endocrine cell nutrient exposure and thus potentially different gut hormone changes. Studies reporting the comparative effects of LRYGBP and LSG on appetite and circulating gut hormones are controversial, with no data to date on the effects of LSG on circulating peptide YY3-36 (PYY3-36) levels, the specific PYY anorectic isoform. In this study, we prospectively investigated appetite and gut hormone changes in response to LRYGBP and LSG in adiposity-matched non-diabetic patients. Anthropometric indices, leptin, fasted and nutrient-stimulated acyl-ghrelin, active glucagon-like peptide-1 (GLP-1), PYY3-36 levels and appetite were determined pre-operatively and at 6 and 12 weeks post-operatively in obese, non-diabetic females, with ten undergoing LRYGBP and eight adiposity-matched females undergoing LSG. LRYGBP and LSG comparably reduced adiposity. LSG decreased fasting and post-prandial plasma acyl-ghrelin compared to pre-surgery and to LRYGBP. Nutrient-stimulated PYY3-36 and active GLP-1 concentrations increased post-operatively in both groups. However, LRYGBP induced greater, more sustained PYY3-36 and active GLP-1 increments compared to LSG. LRYGBP suppressed fasting hunger compared to LSG. A similar increase in post-prandial fullness was observed post-surgery following both procedures. LRYGBP and LSG produced comparable enhanced satiety and weight loss. However, LSG and LRYGBP differentially altered gut hormone profiles.


Subject(s)
Appetite , Gastrectomy , Gastric Bypass , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Laparoscopy , Obesity, Morbid/surgery , Peptide Fragments/metabolism , Peptide YY/metabolism , Adolescent , Adult , Body Mass Index , Female , Humans , Middle Aged , Obesity, Morbid/metabolism , Prospective Studies , Treatment Outcome , Weight Loss
5.
PLoS One ; 8(3): e59407, 2013.
Article in English | MEDLINE | ID: mdl-23527188

ABSTRACT

BACKGROUND: Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -ß isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. METHODS: Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. RESULTS: Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-ß expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R(2) = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R(2) = 0.06, P = 0.34). Hypothalamic expression of Nnat-ß correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. CONCLUSIONS: Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss.


Subject(s)
Gastric Bypass , Gene Expression Regulation/physiology , Hypothalamus/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Obesity/metabolism , RNA Splicing/physiology , Adipose Tissue/metabolism , Analysis of Variance , Animals , Caloric Restriction , Gastrointestinal Tract/metabolism , Gene Expression Profiling , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Protein Isoforms/metabolism , Reverse Transcriptase Polymerase Chain Reaction
6.
PLoS One ; 8(8): e70735, 2013.
Article in English | MEDLINE | ID: mdl-23950990

ABSTRACT

The prevalence of severe obesity, defined as body mass index (BMI) ≥ 35.0 kg/m(2), is rising rapidly. Given the disproportionately high health burden and healthcare costs associated with this condition, understanding the underlying aetiology, including predisposing genetic factors, is a biomedical research priority. Previous studies have suggested that severe obesity represents an extreme tail of the population BMI variation, reflecting shared genetic factors operating across the spectrum. Here, we sought to determine whether a panel of 32 known common obesity-susceptibility variants contribute to severe obesity in patients (n = 1,003, mean BMI 48.4 ± 8.1 kg/m(2)) attending bariatric surgery clinics in two European centres. We examined the effects of these 32 common variants on obesity risk and BMI, both as individual markers and in combination as a genetic risk score, in a comparison with normal-weight controls (n = 1,809, BMI 18.0-24.9 kg/m(2)); an approach which, to our knowledge, has not been previously undertaken in the setting of a bariatric clinic. We found strong associations with severe obesity for SNP rs9939609 within the FTO gene (P = 9.3 × 10(-8)) and SNP rs2815752 near the NEGR1 gene (P = 3.6 × 10(-4)), and directionally consistent nominal associations (P<0.05) for 12 other SNPs. The genetic risk score associated with severe obesity (P = 8.3 × 10(-11)) but, within the bariatric cohort, this score did not associate with BMI itself (P = 0.264). Our results show significant effects of individual BMI-associated common variants within a relatively small sample size of bariatric patients. Furthermore, the burden of such low-penetrant risk alleles contributes to severe obesity in this population. Our findings support that severe obesity observed in bariatric patients represents an extreme tail of the population BMI variation. Moreover, future genetic studies focused on bariatric patients may provide valuable insights into the pathogenesis of obesity at a population level.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Genetic Predisposition to Disease/genetics , Obesity, Morbid/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Adult , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Bariatric Surgery , Body Mass Index , Case-Control Studies , Female , GPI-Linked Proteins/genetics , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study , Genotype , Humans , Italy , Logistic Models , London , Male , Middle Aged , Models, Genetic , Obesity, Morbid/ethnology , Obesity, Morbid/surgery , Referral and Consultation , White People/genetics
7.
J Clin Invest ; 123(8): 3539-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23867619

ABSTRACT

Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans.


Subject(s)
Appetite , Ghrelin/blood , Proteins/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Adolescent , Adult , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Brain/physiology , Eating/psychology , Food , Functional Neuroimaging , Gene Expression , Gene Expression Regulation , Genetic Association Studies , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Methylation , Mice , Mice, Knockout , Polymorphism, Single Nucleotide , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reward , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Young Adult
10.
Trends Endocrinol Metab ; 21(6): 337-44, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20133150

ABSTRACT

Bariatric surgery is the most effective treatment modality for obesity, resulting in durable weight loss and amelioration of obesity-associated comorbidities, particularly type 2 diabetes mellitus (T2DM). Moreover, the metabolic benefits of bariatric surgery occur independently of weight loss. There is increasing evidence that surgically induced alterations in circulating gut hormones mediate these beneficial effects of bariatric surgery. Here, we summarise current knowledge on the effects of different bariatric procedures on circulating gut hormone levels. We also discuss the theories that have been put forward to explain the weight loss and T2DM resolution following bariatric surgery. Understanding the mechanisms mediating these beneficial outcomes of bariatric surgery could result in new non-surgical treatment strategies for obesity and T2DM.


Subject(s)
Bariatric Surgery , Caloric Restriction , Diabetes Mellitus, Type 2/metabolism , Obesity/surgery , Weight Loss/physiology , Bariatric Surgery/classification , Bariatric Surgery/methods , Diabetes Mellitus, Type 2/surgery , Energy Metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Obesity/metabolism , Peptide YY/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL