Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31109946

ABSTRACT

PE-PilA is a fusion protein composed of immunologically relevant parts of protein E (PE) and the majority subunit of the type IV pilus (PilA), two major antigens of nontypeable Haemophilus influenzae (NTHi). Here we report on the preclinical evaluation of PE-PilA as a vaccine antigen. The immunogenic potential of the PE and PilA within the fusion was compared with that of isolated PE and PilA antigens. When injected intramuscularly into mice, the immunogenicity of PE within the fusion was equivalent to that of isolated PE, except when it was formulated with alum. In contrast, in our murine models PilA was consistently found to be more immunogenic as a subentity of the PE-PilA fusion protein than when it was injected as an isolated antigen. Following immunization with PE-PilA, anti-PE antibodies demonstrated the same capacity to inhibit the binding of PE to vitronectin as those induced after PE immunization. Likewise, PE-PilA-induced anti-PilA antibodies inhibited the formation of NTHi biofilms and disrupted established biofilms in vitro These experiments support the immunogenic equivalence between fused PE-PilA and isolated PE and PilA. Further, the potential of PE-PilA immunization against NTHi-induced disease was evaluated. After intranasal NTHi challenge, colonization of the murine nasopharynx significantly dropped in animals formerly immunized with PE-PilA, and in chinchillas, signs of otitis media were significantly reduced in animals that had received anti-PE-PilA antibodies. Taken together, our data support the use of PE-PilA as an NTHi vaccine antigen.


Subject(s)
Bacterial Proteins/immunology , Fimbriae Proteins/immunology , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Animals , Bacterial Adhesion , Biofilms , Chinchilla , Female , Immunization , Mice , Mice, Inbred BALB C , Nasopharynx/microbiology , Otitis Media/prevention & control , Vaccines, Synthetic/immunology , Vitronectin/metabolism
2.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31085711

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a pathogen known for being a frequent cause of acute otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In the present study, a vaccine antigen based on the fusion of two known NTHi adhesive proteins, protein E (PE) and a pilin subunit (PilA), was developed. The quality of the combined antigen was investigated through functional, biophysical, and structural analyses. It was shown that the PE and PilA individual structures are not modified in the PE-PilA fusion and that PE-PilA assembles as a dimer in solution, reflecting PE dimerization. PE-PilA was found to bind vitronectin by enzyme-linked immunosorbent assay, as isolated PE does. Disulfide bridges were conserved and homogeneous, which was determined by peptide mapping and top-down analysis of PE, PilA, and PE-PilA molecules. Finally, the PE-PilA crystal showed a PE entity with a three-dimensional (3D) structure similar to that of the recently published isolated PE, while the structure of the PilA entity was similar to that of a 3D model elaborated from two other type 4 pilin subunits. Taken together, our observations suggest that the two tethered proteins behave independently within the chimeric molecule and display structures similar to those of the respective isolated antigens, which are important characteristics for eliciting optimal antibody-mediated immunity. PE and PilA can thus be further developed as a single fusion protein in a vaccine perspective, in the knowledge that tethering the two antigens does not perceptibly compromise the structural attributes offered by the individual antigens.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Fimbriae Proteins/immunology , Haemophilus Vaccines/immunology , Bacterial Proteins/chemistry , Crystallization , Fimbriae Proteins/chemistry , Protein Folding , Vaccines, Synthetic/immunology
3.
Vaccine ; 40(45): 6520-6527, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36202640

ABSTRACT

Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.


Subject(s)
Anti-Bacterial Agents , Antibodies, Monoclonal , Moraxella catarrhalis , Adult , Humans , Amino Acids/metabolism , Antibodies, Monoclonal/pharmacology , Bacterial Outer Membrane Proteins/immunology , Epitopes/metabolism , Extracellular Matrix Proteins/metabolism , Type V Secretion Systems/metabolism , Anti-Bacterial Agents/pharmacology
4.
Vaccine ; 39(39): 5641-5649, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34446318

ABSTRACT

Moraxella catarrhalis (Mcat) is a key pathogen associated with exacerbations of chronic obstructive pulmonary disease (COPD) in adults and playing a significant role in otitis media in children. A vaccine would help to reduce the morbidity and mortality associated with these diseases. UspA2 is an Mcat surface antigen considered earlier as vaccine candidate before the interest in this molecule vanished due to sequence variability. However, the observation that some conserved domains are the target of bactericidal antibodies prompted us to reconsider UspA2 as a potential vaccine antigen. We first determined its prevalence among the COPD patients from the AERIS study, as the prevalence of UspA2 in a COPD-restricted population had yet to be documented. The gene was found in all Mcat isolates either as UspA2 or UspA2H variant. The percentage of UspA2H variant was higher than in any report so far, reaching 51%. A potential link between the role of UspA2H in biofilm formation and this high prevalence is discussed. To study further UspA2 as a vaccine antigen, recombinant UspA2 molecules were designed and used in animal models and bactericidal assays. We showed that UspA2 is immunogenic and that UspA2 immunization clears Mcat pulmonary challenge in a mouse model. In a serum bactericidal assay, anti-UspA2 antibodies generated in mice, guinea pigs or rabbits were able to kill Mcat strains of various origins, including a subset of isolates from the AERIS study, cross-reacting with UspA2H and even UspA1, a closely related Mcat surface protein. In conclusion, UspA2 is a cross-reactive Mcat antigen presenting the characteristics of a vaccine candidate.


Subject(s)
Moraxella catarrhalis , Otitis Media , Animals , Antigens, Surface , Bacterial Outer Membrane Proteins , Cross Reactions , Guinea Pigs , Humans , Mice , Rabbits
5.
Hum Vaccin Immunother ; 14(5): 1234-1242, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29400602

ABSTRACT

Serotype-independent protein-based pneumococcal vaccines represent attractive alternatives to capsular polysaccharide-based vaccines. The aim of this study was to identify novel immunogenic proteins from Streptococcus pneumoniae that may be used in protein-based pneumococcal vaccine. An immunoproteomics approach and a humanized severe combined immunodeficient mouse model were used to identify S. pneumoniae proteins that are immunogenic for the human immune system. Among the several proteins identified, SP1683 was selected, recombinantly produced, and infection and colonization murine models were used to evaluate the capacity of SP1683 to elicit protective responses, in comparison to known pneumococcal immunogenic proteins (PhtD and detoxified pneumolysin, dPly). Immunisation with SP1683 elicited a weaker antibody response than immunisation with PhtD and did not provide protection in the model of invasive disease. However, similar to PhtD, it was able to significantly reduce colonization in the mouse model of nasopharyngeal carriage. Treatment with anti-IL17A and anti-IL17F antibodies abolished the protection against colonization elicited by SP1683 or PhtD + dPly, which indicated that the protection afforded in this model was Th17-dependent. In conclusion, intranasal immunization with the pneumococcal protein SP1683 conferred IL17-dependent protection against nasopharyngeal carriage in mice, but systemic immunization did not protect against invasive disease. These results do not support the use of SP1683 as an isolated pneumococcal vaccine antigen. Nevertheless, SP1683 could be used as a first line of defence in formulations combining several proteins.


Subject(s)
Bacterial Proteins/immunology , Nasopharynx/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Administration, Intranasal , Adult , Animals , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Bacterial Proteins/administration & dosage , Blood Buffy Coat/immunology , Disease Models, Animal , Female , Humans , Immunogenicity, Vaccine , Leukocytes, Mononuclear , Mice , Mice, SCID , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/administration & dosage , Proteomics/methods , Serogroup , Streptococcus pneumoniae/genetics , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL