Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2712-2720, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35718491

ABSTRACT

This study aims to evaluate the anti-tumor and analgesic activities of Compound Kushen Injection(CKI) based on zebrafish model in vivo and investigate the anti-tumor mechanism. To be specific, zebrafish tumor xenotransplantation model was established by microinjection of murine LPC H12 cells into yolk sac. Then the high-dose CKI(H-CKI), medium-dose CKI(M-CKI), low-dose CKI(L-CKI) groups, and the model group were set. The anti-tumor activity of CKI was evaluated with the tumor area growth fold and integral absorbance(IA) growth fold 72 h after administration. The peripheral pain and central pain in zebrafish were respectively induced with acetic acid(AA) and phorbol myristate acetate(PMA). Zebralab ViewPoint system was employed to monitor behavioral trajectory of zebrafish, and movement times, movement time, movement distance, and movement velocity were used to evaluate the analgesic activity of CKI. Finally, real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression levels of apoptosis-related B lymphocyte tumor-2(Bcl-2) and phosphatidylinositol-3-kinase(PI3 K)/protein kinase B(Akt or PKB) pathway-related genes, for the verification of the anti-tumor mechanism. Compared with the model group, M-CKI and H-CKI significantly reduced the growth folds of tumor area and IA, relief the peripheral pain and central pain. The mechanism was that CKI can up-regulate the expression of cysteine aspartic acid specific protease-3(caspase-3, Casp3) and caspase-9(Casp9), down-regulate the expression of phosphoinositide 3-kinase(PI3 K) and Akt, and significantly reduce the expression of Bcl-2, hypoxia-inducible factor-1α(HIF-1α), and vascular endothelial growth factor(VEGF). In conclusion, CKI has significant inhibitory effect on tumor growth and pain, which is related to the PI3 K/Akt signaling pathway. The pathway mediates cell apoptosis, suppresses tumor growth, and alleviates tumor pain.


Subject(s)
Antineoplastic Agents , Neoplasms , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Mice , Neoplasms/drug therapy , Pain/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2 , Vascular Endothelial Growth Factor A , Zebrafish
2.
Food Funct ; 12(20): 10281-10290, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34549762

ABSTRACT

Alcoholic liver disease (ALD) is a major health issue globally due to the consumption of alcoholic beverages. Thymus quinquecostatus Celak is a food additive and an edible herb that is widely used in Asia and possesses hepatoprotective activity, but the underlying mechanisms behind this protective activity are not completely understood. The purpose of this study was to investigate the hepatoprotective effects of Thymus quinquecostatus Celak extract (TQE) against ALD as well as the underlying mechanism based on gut microbiota and the gut-liver axis. TQE supplementation markedly alleviated chronic alcohol-induced liver injury in C57 mice. TQE also ameliorated gut barrier dysfunction induced by alcohol. Consequently, the activation of the lipopolysaccharide (LPS) translocation-mediated TLR4 pathway and the subsequent inflammatory response and ROS overproduction in the liver were suppressed. Meanwhile, alcohol-induced gut microbiota dysbiosis was also corrected by TQE. To further investigate the contribution of gut dysbiosis correction to the beneficial effects of TQE on ALD, a fecal microbiota transplantation study was conducted. TQE-manipulated gut microbiota transplantation markedly counteracted the alcohol-induced gut dysbiosis in the recipient mice. In parallel with gut dysbiosis correction, liver damage was partly ameliorated in the recipient mice. Gut barrier dysfunction, endotoxemia, TLR4 pathway induction as well as downstream inflammatory response and ROS overproduction were also partly suppressed due to gut dysbiosis correction in alcohol-fed recipient mice. In summary, these results suggest that gut dysbiosis correction contributes to the hepatoprotective effects of TQE against alcohol through the gut-liver axis.


Subject(s)
Dysbiosis/drug therapy , Liver Diseases, Alcoholic/prevention & control , Plant Extracts/pharmacology , Protective Agents/pharmacology , Thymus Plant/chemistry , Animals , Dysbiosis/metabolism , Ethanol/adverse effects , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
3.
J Ethnopharmacol ; 280: 114439, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34293455

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR), an ancient and classical herbal couple, has been extensively used for tumor treatment in clinic of traditional Chinese medicines (TCMs). AIM OF THE STUDY: The study aimed to uncover the anti-tumor active materials of CR-SR water decoction (CR:SR = 1:1) via an integrated approach of spectrum-effect relationship, molecular docking, and ADME evaluation. MATERIALS AND METHODS: The anti-tumor activities toward A549, HepG2, Hela, BGC-823, and MCF-7 cells of the different polar elution fractions (DPEFs) of CR, SR, and CR-SR were determined by Cell Counting Kit-8 (CCK-8) assay. Likewise, the DPEFs' combinations of CR and SR were also tested. The chemical fingerprints of these fractions were profiled by HPLC. Meanwhile, HPLC-ESI-Q-TOF-MS/MS was applied for the identification of chemical components. The main effect-related compounds were screened out by spectrum-effect relationship and molecular docking method. The oral bioavailability and druggability of these active components were subsequently evaluated. Finally, five monomeric compounds were validated experimentally using HepG2 cells. RESULTS: The 80% ethanol elution fraction of CR, SR, and CR-SR showed strong anti-tumor effects toward five cells. Also, the combinations with the 80% ethanol elution fraction of CR and SR showed stronger tumor inhibition effects among the DPEFs' combinations of CR and SR. By spectrum-effect relationship, HPLC-MS, and molecular docking analysis, 24 main effect-related compounds seemed to have potential anti-tumor effects. ADME evaluation showed rutin performed low oral bioavailability and druggability. Therefore, we suppose that 23 compounds (including 4 unknown compounds) are the primary anti-tumor active components of CR-SR water decoction. Among them, zederone, curcumol, chlorogenic acid, calycosin, and curcumenol were validated successfully with good tumor inhibition effects. CONCLUSIONS: In summary, this study demonstrated that the multi-components of CR-SR contribute to its anti-tumor effects. It established a rapid and useful strategy to explore the active material basis of traditional Chinese herbal couples with a multi-technology integrated approach in practice, including chromatography, mass spectrometry, machine algorithm models, online databases, and in vitro cell experiments.


Subject(s)
Antineoplastic Agents/pharmacology , Curcuma/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/therapeutic use , Plant Roots/chemistry , Typhaceae/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Molecular Docking Simulation , Phytotherapy , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL