Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102535

ABSTRACT

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Gene Expression Regulation, Plant , Ubiquitination , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Protein Stability/radiation effects , Light , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/genetics
2.
Opt Express ; 32(7): 12243-12256, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571053

ABSTRACT

Integral imaging is a kind of true three-dimensional (3D) display technology that uses a lens array to reconstruct vivid 3D images with full parallax and true color. In order to present a high-quality 3D image, it's vital to correct the axial position error caused by the misalignment and deformation of the lens array which makes the reconstructed lights deviate from the correct directions, resulting in severe voxel drifting and image blurring. We proposed a sub-pixel marking method to measure the axial position error of the lenses with great accuracy by addressing the sub-pixels under each lens and forming a homologous sub-pixel pair. The proposed measurement method relies on the geometric center alignment of image points, which is specifically expressed as the overlap between the test 3D voxel and the reference 3D voxel. Hence, measurement accuracy could be higher. Additionally, a depth-based sub-pixel correction method was proposed to eliminate the voxel drifting. The proposed correction method takes the voxel depth into consideration in the correction coefficient, and achieves accurate error correction for 3D images with different depths. The experimental results well confirmed that the proposed measuring and correction methods can greatly suppress the voxel drifting caused by the axial position error of the lenses, and greatly improve the 3D image quality.

3.
Phys Rev Lett ; 132(21): 210403, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856252

ABSTRACT

A fundamental challenge in quantum thermodynamics is the exploration of inherent dimensional constraints in thermodynamic machines. In the context of two-level systems, the most compact refrigerator necessitates the involvement of three entities, operating under self-contained conditions that preclude the use of external work sources. Here, we build such a smallest refrigerator using a nuclear spin system, where three distinct two-level carbon-13 nuclei in the same molecule are involved to facilitate the refrigeration process. The self-contained feature enables it to operate without relying on net external work, and the unique mechanism sets this refrigerator apart from its classical counterparts. We evaluate its performance under varying conditions and systematically scrutinize the cooling constraints across a spectrum of scenarios, which sheds light on the interplay between quantum information and thermodynamics.

4.
Drug Resist Updat ; 66: 100907, 2023 01.
Article in English | MEDLINE | ID: mdl-36527888

ABSTRACT

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen , Drug Resistance , Immunotherapy , Tumor Microenvironment
5.
Sensors (Basel) ; 24(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38544177

ABSTRACT

LEO satellite constellations can provide a viable alternative to expand connectivity to remote, isolated geographical areas and complement existing IoT terrestrial communication infrastructures. This paper aims to improve LEO satellite communications by implementing a new phased antenna array system that can significantly improve the radio communication link's performance. By adjusting the progressive phase shift to each element of the antenna array system, the direction of the main radiation lobe of the phased antenna array system can be controlled with accuracy. As far as we know, it is the first time that a four-element, three-quarter wavelength phased antenna array system has been successfully realized with the intention of being optimized for implementation in LEO IoT satellite reception systems. The proposed system's high level of performance is confirmed by the measurements, which indicate effective control of the main radiation lobe orientation. The numerical analysis shows a maximum gain close to 12 dBi for about 42° elevation, a Half Power Beamwidth (HPBW) of 32° in the vertical plane, and 80° in the azimuth plane. The experimental measurement results at various main lobe orientation angles revealed an HPBW ranging from 76° to 87° in the azimuth plane and a maximum Front-to-Back ratio (F/B) of 14.5 dB.

6.
Soc Sci Res ; 122: 103053, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39216919

ABSTRACT

Despite the rapid growth of private tutoring, previous studies have not systematically addressed its implications for socioeconomic status (SES) disparities in education, as they have only separately examined differential access to and the effects of private tutoring. This study directly estimates the causal contribution of private tutoring to SES disparities in educational achievement and cognitive ability among Chinese middle school students. Using nationally representative longitudinal data and a novel gap-closing approach, we find that unequal access to private tutoring does not uniformally result in significant learning gaps between high- and low-SES students. When comparing disadvantaged students with their most socioeconomically advantaged peers, we find that the proportions of SES disparities attributed to differences in participation in and intensity of private tutoring increase with these differences. These findings have important policy implications for reducing SES disparities in learning outcomes.

7.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6154-6163, 2023 Nov.
Article in Zh | MEDLINE | ID: mdl-38114222

ABSTRACT

This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.


Subject(s)
Apoptosis , Oxygen , Mice , Animals , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Adenosine Triphosphate/pharmacology , Mitogen-Activated Protein Kinase Kinases/pharmacology , Glucose/metabolism
8.
Angew Chem Int Ed Engl ; 61(38): e202208721, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35906932

ABSTRACT

A series of dinuclear RuII complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity. Ru3 successfully suppresses melanoma tumor growth in vitro and in vivo with combined photodynamic and photothermal therapy under low light dose irradiation of an 808 nm low-power laser, avoiding the known PDT resistance in melanoma. The excellent therapeutic effect of Ru3 facilitates its applications in further human trials for larger or deeper buried tumors, thereby becoming a prospective candidate for a new generation of low-power IR-driven dual PDT/PTT drugs.


Subject(s)
Melanoma , Photochemotherapy , Ruthenium , Cell Line, Tumor , Humans , Lasers , Melanoma/drug therapy , Mitochondria , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photothermal Therapy , Ruthenium/pharmacology
9.
Environ Sci Technol ; 55(12): 7869-7879, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34096723

ABSTRACT

Accurate estimation of black carbon (BC) emissions is essential for assessing the health and climate impact of this pollutant. Past emission inventories were associated with high uncertainty due to data limitations, and recent information has provided a unique updating opportunity. Moreover, understanding the drivers that cause temporal emission changes is of research value. Here, we update the global BC emission estimates using new data on the activities and emission factors (EFs). The new inventory covers 73 detailed sources at 0.1° × 0.1° spatial resolution and monthly temporal resolution from 1960 to 2017. The estimated annual emissions were 32% higher than the average of several previous inventories, which was primarily due to field-measured EFs for residential stoves and differentiated EFs for motor vehicles. In addition, the updated emissions show an inverse U-shaped temporal trend, which was mainly driven by the interaction between the positive effects of population growth, per capita energy consumption, and vehicle fleet and the negative effects of residential energy switching, stove upgrading, phasing out of beehive coke ovens, and reduced EFs for vehicles and industrial processes. Urbanization caused a significant increase in urban emissions accompanied by a more significant decline in rural emissions.


Subject(s)
Air Pollutants , Household Articles , Air Pollutants/analysis , Carbon , Environmental Monitoring , Motor Vehicles , Soot/analysis , Vehicle Emissions/analysis
10.
Sensors (Basel) ; 21(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640867

ABSTRACT

With the emerging of wearable robots, the safety and effectiveness of human-robot physical interaction have attracted extensive attention. Recent studies suggest that online measurement of the interaction force between the robot and the human body is essential to the aspects above in wearable exoskeletons. However, a large proportion of existing wearable exoskeletons monitor and sense the delivered force and torque through an indirect-measure method, in which the torque is estimated by the motor current. Direct force/torque measuring through low-cost and compact wearable sensors remains an open problem. This paper presents a compact soft sensor system for wearable gait assistance exoskeletons. The contact force is converted into a voltage signal by measuring the air pressure within a soft pneumatic chamber. The developed soft force sensor system was implemented on a robotic hip exoskeleton, and the real-time interaction force between the human thigh and the exoskeleton was measured through two differential soft chambers. The delivered torque of the hip exoskeleton was calculated based on a characterization model. Experimental results suggested that the sensor system achieved direct force measurement with an error of 10.3 ± 6.58%, and torque monitoring for a hip exoskeleton which provided an understanding for the importance of direct force/torque measurement for assistive performance. Compared with traditional rigid force sensors, the proposed system has several merits, as it is compact, low-cost, and has good adaptability to the human body due to the soft structure.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Gait , Humans , Monitoring, Physiologic , Torque
11.
Phys Rev Lett ; 125(9): 090502, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32915602

ABSTRACT

The detection of topological phases of matter has become a central issue in recent years. Conventionally, the realization of a specific topological phase in condensed matter physics relies on probing the underlying surface band dispersion or quantum transport signature of a real material, which may be imperfect or even absent. On the other hand, quantum simulation offers an alternative approach to directly measure the topological invariant on a universal quantum computer. However, experimentally demonstrating high-dimensional topological phases remains a challenge due to the technical limitations of current experimental platforms. Here, we investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class, which yet lack experimental realization. Using the nuclear magnetic resonance system, we experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted and the dynamical bulk-boundary correspondence in the momentum space is observed. As a result, the topological invariants are measured with high precision on the band-inversion surface, exhibiting robustness to the decoherence effect. Our Letter paves the way toward the quantum simulation of topological phases of matter in higher dimensions and more complex systems through controllable quantum phases transitions.

12.
Environ Sci Technol ; 54(11): 6508-6517, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32379431

ABSTRACT

The presence of sulfur dioxide (SO2) in the air is a global concern because of its severe environmental and public health impacts. Recent evidence from satellite observations shows rapid changes in the spatial distribution of global SO2 emissions, but such features are generally missing in global emission inventories that use a bottom-up method due to the lack of up-to-date information, especially in developing countries. Here, we rely on the latest data available on emission activities, control measures, and emission factors to estimate global SO2 emissions for the period 1960-2014 on a 0.1° × 0.1° spatial resolution. We design two counterfactual scenarios to isolate the contributions of emission activity growth and control measure deployment on historical SO2 emission changes. We find that activity growth has been the major factor driving global SO2 emission changes overall, but control measure deployment is playing an increasingly important role. With effective control measures deployed in developed countries, the predominant emission contributor has shifted from developed countries in the early 1960s (61%) to developing countries at present (83%). Developing countries show divergency in mitigation strategies and thus in SO2 emission trends. Stringent controls in China are driving the recent decline in global emissions. A further reduction in SO2 emissions would come from a large number of developing nations that currently lack effective SO2 emission controls.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , China , Environmental Monitoring , Sulfur Dioxide/analysis
13.
Environ Sci Technol ; 54(21): 13458-13466, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33095991

ABSTRACT

Residential heating using solid fuels contributes significantly to air pollution and has subsequent health impacts in China. To mitigate emissions, a clean heating campaign (CHC-1) covering 28 municipalities has been implemented. Although only a single penetration rate was initially planned by CHC-1 for all municipalities, outcomes in the different municipalities varied considerably. Recently, a second phase (CHC-2) has been launched for the remaining 128 municipalities in northern China with once again a fixed penetration rate set. Here, we quantified factors that affected the penetration rates of CHC-1, developed an intervention scheme with differentiated targets for CHC-2, and compared the environmental and health benefits of the fixed- and differentiated-rate strategies. We found that the penetration rates of CHC-1 depended on per capita income, terrain slope, and population density and that such relationships could be quantified using a piecewise regression model. This model was applied to develop a differentiated-rate strategy for CHC-2. It clearly evidenced that a differentiated scheme would be more environmentally beneficial. Although the same number of rural households can achieve clean heating under both intervention scenarios, the proposed differentiated strategy can prevent 30 000 (23 000-34 000) premature deaths associated with residential heating annually compared to the 26 000 (21 000-31 000) premature deaths prevented under the fixed-rate scheme. Differences among gender and age groups and the effects of urbanization and aging are also discussed.

14.
World J Surg Oncol ; 18(1): 44, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32106856

ABSTRACT

BACKGROUND: Whether video-assisted thoracoscopic surgery (VATS) segmentectomy and VATS lobectomy provide similar perioperative and oncological outcomes in stage I non-small cell lung cancer (NSCLC) is still controversial. METHODS: Meta-analysis of 12 studies comparing outcomes after VATS lobectomy and VATS segmentectomy for stage I NSCLC. Data were analyzed by the RevMan 5.3 software. RESULTS: Disease-free survival (HR 1.19, 95% CI 0.89 to 1.33, P = 0.39), overall survival (HR 1.11, 95% CI 0.89 to 1.38, P = 0.36), postoperative complications (OR = 1.10, 95% CI 0.69 to 1.75, P = 0.7), intraoperative blood loss (MD = 3.87, 95% CI - 10.21 to 17.94, P = 0.59), operative time (MD = 10.89, 95% CI - 13.04 to 34.82, P = 0.37), air leak > 5 days (OR = 1.20, 95% CI 0.66 to 2.17, P = 0.55), and in-hospital mortality (OR = 1.67, 95% CI 0.39 to 7.16, P = 0.49) were comparable between the groups. Postoperative hospital stay (MD = - 0.69, 95% CI - 1.19 to - 0.19, P = 0.007) and number of dissected lymph nodes (MD = - 6.44, 95%CI - 9.49 to - 3.40, P < 0.0001) were significantly lower in VATS segmentectomy patients. CONCLUSIONS: VATS segmentectomy and VATS lobectomy provide similar oncological and perioperative outcomes for stage I NSCLC patients. This systematic review was registered on PROSPERO and can be accessed at http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID = CRD42019133398.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Pneumonectomy/methods , Postoperative Complications/epidemiology , Thoracic Surgery, Video-Assisted/methods , Blood Loss, Surgical/statistics & numerical data , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Hospital Mortality , Humans , Length of Stay/statistics & numerical data , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Operative Time , Pneumonectomy/adverse effects , Postoperative Complications/etiology , Prognosis , Thoracic Surgery, Video-Assisted/adverse effects
15.
Ecotoxicol Environ Saf ; 188: 109875, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31706244

ABSTRACT

Previous works showed that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced insulin resistance in male mice. To further observe the different effects of Aroclor 1254 exposure on the pancreatic α-cells and ß-cells, male mice were exposed to Aroclor 1254 (0, 0.5, 5, 50, 500 µg/kg) for 60 days, the pancreas was performed a histological examination. The results showed that the percentage of apoptosis cell (indicated by TUNEL assay) was increased in both α-cells and ß-cells, as the Aroclor 1254 dose was increased; the proliferation (indicated by PCNA expression) rate of ß-cells was elevated while that of α-cells was not affected, resulting in an increased ß-cell mass and a decreased α-cell mass in a dose-depend manner. The number of Pdx-1 positive ß-cells was significantly increased whereas that of Arx positive α-cells was markedly decreased, indicating an enhanced ß-cell neogenesis and a weakened α-cell neogenesis. The drastically reduction of serum testosterone levels in all the treatments suggested an anti-androgenic potency of Aroclor 1254. The up-regulation of estrogen receptors (ERα and ERß) and androgen receptor in ß-cells might be responsible for the increased ß-cell mass and neogenesis.


Subject(s)
Antithyroid Agents/toxicity , Glucagon-Secreting Cells/drug effects , Insulin-Secreting Cells/drug effects , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Mice , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Testosterone/blood , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Environ Sci Technol ; 53(12): 6989-6996, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31184128

ABSTRACT

Low temperature NH3 selective catalytic reduction (NH3-SCR) technology is an efficient and economical strategy for cutting NO x emissions from power-generating equipment. In this study, a novel and highly efficient NH3-SCR catalyst, tourmaline-modified FeMnTiO x is presented, which was synthesized by a simple one-step sol-gel method. We found that the amount of tourmaline has an important impact on the catalytic performance of the modified FeMnTiO x-based catalysts, and the NO x conversion exceeded 80% from 160 to 380 °C with the addition of 5 wt % tourmaline. Compared with the pure FeMnTiO x, the catalytic efficiency at a temperature below 100 °C was increased by nearly 18.9%, and the operation temperature window was broadened significantly. The enhanced catalytic performance of the FeMnTiO x catalyst was mainly attributed to the small spherical nanoparticles structure around the tourmaline powders, resulting in the increased content of Mn3+, Mn4+, and chemical oxygen on the catalytic surface. These as-developed tourmaline-modified FeMnTiO x materials have been demonstrated to be promising as a new type highly efficient low temperature NH3-SCR catalyst.


Subject(s)
Ammonia , Cold Temperature , Catalysis , Silicates , Temperature
17.
Biomed Environ Sci ; 30(10): 772-776, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29122099

ABSTRACT

To establish a genetic susceptibility assessment model of lung cancer risk potentially associated with polycyclic aromatic hydrocarbon (PAH) inhalation exposure among non-smokers in China, a total of 143 patients with lung adenocarcinoma and 143 cancer-free individuals were recruited. Sixty-eight genetic polymorphisms in 10 pathways related to PAH metabolism and tumorigenesis were selected and examined. It was observed that 3 genetic polymorphisms, along with 10 additional genetic polymorphisms via gene-gene interactions, significantly influenced lung cancer risk potentially associated with PAH inhalation exposure. Most polymorphisms were associated with PAH metabolism. According to the established genetic susceptibility score (GSS), lung cancer risk increased with a rise in the GSS level, thereby indicating a positive dose-response relationship.


Subject(s)
Adenocarcinoma/chemically induced , Adenocarcinoma/genetics , Genetic Predisposition to Disease , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Polycyclic Aromatic Hydrocarbons/toxicity , Adenocarcinoma/epidemiology , Air Pollutants/toxicity , China , Humans , Inhalation Exposure , Lung Neoplasms/epidemiology
19.
J Environ Sci (China) ; 33: 78-87, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26141880

ABSTRACT

A two-phase anaerobic reactor fed with glucose substrate (3 g chemical oxygen demand (COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product (SMP) formation. Low concentrations of Ni(II) (5 and 10 mg/L) promoted the acid phase, whereas high concentrations (15, 20, and 25 mg/L) exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.


Subject(s)
Bacteria/metabolism , Bioreactors , Nickel/chemistry , Anaerobiosis , Biodegradation, Environmental , Spectrometry, Fluorescence , Waste Disposal, Fluid/methods , Water Pollutants, Chemical
20.
Neurosci Bull ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215886

ABSTRACT

Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.

SELECTION OF CITATIONS
SEARCH DETAIL