Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Cell Mol Med ; 28(2): e18031, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937809

ABSTRACT

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Subject(s)
Infertility, Male , Serine-Type D-Ala-D-Ala Carboxypeptidase , Teratozoospermia , Humans , Male , Animals , Mice , Teratozoospermia/genetics , Teratozoospermia/metabolism , Tubulin/metabolism , Semen/metabolism , Spermatozoa/metabolism , Sperm Head/metabolism , Flagella/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Mutation , GTP-Binding Proteins/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
2.
Immunity ; 43(1): 52-64, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26163372

ABSTRACT

MicroRNA (miRNA)-dependent regulation of gene expression confers robustness to cellular phenotypes and controls responses to extracellular stimuli. Although a single miRNA can regulate expression of hundreds of target genes, it is unclear whether any of its distinct biological functions can be due to the regulation of a single target. To explore in vivo the function of a single miRNA-mRNA interaction, we mutated the 3' UTR of a major miR-155 target (SOCS1) to specifically disrupt its regulation by miR-155. We found that under physiologic conditions and during autoimmune inflammation or viral infection, some immunological functions of miR-155 were fully or largely attributable to the regulation of SOCS1, whereas others could be accounted only partially or not at all by this interaction. Our data suggest that the role of a single miRNA-mRNA interaction is dependent on cell type and biological context.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , MicroRNAs/genetics , Suppressor of Cytokine Signaling Proteins/genetics , T-Lymphocytes, Regulatory/immunology , 3' Untranslated Regions/genetics , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Profiling , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/transplantation , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Mutation , RNA, Messenger/genetics , Suppressor of Cytokine Signaling 1 Protein
3.
Cell Biol Toxicol ; 40(1): 80, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292286

ABSTRACT

Acetaminophen (APAP) overdose is a leading cause of drug-induced liver damage, highlighting the limitations of current emergency treatments that primarily involve administering the glutathione precursor N-acetylcysteine and supportive therapy. This study highlights the essential protective role of the type II transmembrane serine protease (TTSP), hepsin, in mitigating acetaminophen-induced liver injury, particularly through its regulation of gap junction (GJ) abundance in response to reactive oxygen stress in the liver. We previously reported that reduced levels of activated hepatocyte growth factor and the c-Met receptor tyrosine kinase-both of which are vital for maintaining cellular redox balance-combined with increased expression of GJ proteins in hepsin-deficient mice. Here, we show that hepsin deficiency in mice exacerbates acetaminophen toxicity compared to wild-type mice, leading to more severe liver pathology, elevated oxidative stress, and greater mortality within 6 h after exposure. Administering hepsin had a protective effect in both mouse models, reducing hepatotoxicity by modulating GJ abundance. Additionally, transcriptome analysis and a functional GJ inhibitor have highlighted hepsin's mechanism for managing oxidative stress. Combining hepsin with relatively low doses of N-acetylcysteine had a synergistic effect that was more efficacious than high-dose N-acetylcysteine alone. Our results illustrate the crucial role of hepsin in modulating the abundance of hepatic GJs and reducing oxidative stress, thereby offering early protection against acetaminophen-induced hepatotoxicity and a new, combination approach. Emerging as a promising therapeutic target, hepsin holds potential for combination therapy with N-acetylcysteine, paving the way for novel approaches in managing drug-induced liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Liver , Oxidative Stress , Serine Endopeptidases , Acetaminophen/toxicity , Animals , Oxidative Stress/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Mice , Liver/drug effects , Liver/metabolism , Liver/pathology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Male , Mice, Inbred C57BL , Mice, Knockout
4.
PLoS Genet ; 16(9): e1009020, 2020 09.
Article in English | MEDLINE | ID: mdl-32976492

ABSTRACT

Approximately 2-15% of couples experience infertility, and around half of these cases are attributed to male infertility. We previously identified TBC1D21 as a sterility-related RabGAP gene derived from infertile men. However, the in vivo function of TBC1D21 in male fertility remains unclear. Here, we show that loss of Tbc1d21 in mice resulted in male infertility, characterized by defects in sperm tail structure and diminished sperm motility. The mitochondria of the sperm-tail had an abnormal irregular arrangement, abnormal diameter, and structural defects. Moreover, the axoneme structure of sperm tails was severely disturbed. Several TBC1D21 interactors were selected via proteomic analysis and functional grouping. Two of the candidate interactors, a subunit protein of translocase in the outer membrane of mitochondria (TOMM20) and an inner arm component of the sperm tail axoneme (Dynein Heavy chain 7, DNAH7), confirmed in vivo physical co-localization with TBC1D21. In addition, TOMM20 and DNAH7 detached and dispersed outside the axoneme in Tbc1d21-deficient sperm, instead of aligning with the axoneme. From a clinical perspective, the transcript levels of TBC1D21 in sperm from teratozoospermia cases were significantly reduced when compared with those in normozoospermia. We concluded that TBC1D21 is critical for mitochondrial and axoneme development of mammalian sperm.


Subject(s)
GTPase-Activating Proteins/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Microfilament Proteins/genetics , Spermatozoa/pathology , Spermatozoa/physiology , Animals , Asthenozoospermia/genetics , Axoneme/genetics , Axoneme/ultrastructure , Flagella/genetics , Flagella/pathology , GTPase-Activating Proteins/metabolism , Gene Expression , Humans , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sperm Motility/genetics , Sperm Tail/pathology , Spermatozoa/ultrastructure , Testis/physiology
5.
Pharmacol Res ; 184: 106424, 2022 10.
Article in English | MEDLINE | ID: mdl-36064077

ABSTRACT

The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1ß, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , Pulmonary Embolism , Angiotensin-Converting Enzyme 2 , Chemokine CCL5 , Cytokines , Fibrosis , Humans , Interleukin-6/metabolism , Interleukin-8 , Lung Injury/drug therapy , Pandemics , Phosphatidylinositol 3-Kinases , Plasminogen Activator Inhibitor 1 , Proto-Oncogene Proteins c-akt , Pulmonary Embolism/drug therapy , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , von Willebrand Factor
6.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801843

ABSTRACT

Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.


Subject(s)
Disease Models, Animal , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Sulfate Transporters/genetics , Animals , Genotype , Hearing Loss, Sensorineural/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenotype , Sulfate Transporters/physiology , Vestibular Aqueduct/metabolism , Vestibular Aqueduct/pathology
7.
FASEB J ; 33(4): 5571-5584, 2019 04.
Article in English | MEDLINE | ID: mdl-30640520

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology facilitates somatic genome editing to reveal cooperative genetic interactions at the cellular level without extensive breeding between different mutant animals. Here we propose a transgenic inducible Cas9 effector-CRISPR mutagen ( ICE CRIM) mouse model in which CRISPR/Cas9-mediated somatic mutagenesis events can occur in response to Cre expression. The well-known tumor suppressor gene, Trp53, and 2 important DNA mismatch repair genes, Mlh1 and Msh2, were selected to be our somatic mutagenesis targets. Amplicon-based sequencing was performed to validate the editing efficiency and to identify the mutant allelic series. Crossed with various Cre lines, the Trp53 ICE CRIM alleles were activated to generate targeted cancer gene somatic or germ line mutant variants. We provide experimental evidence to show that an activated ICE CRIM can mutate both targeted alleles within a cell. Simultaneous disruption of multiple genes was also achieved when there were multiple single-guide RNA expression cassettes embedded within an activated ICE CRIM. Our mouse model can be used to generate mutant pools in vivo, which enables a functional screen to be performed in situ. Our results also provide evidence to support a monoclonal origin of hematopoietic neoplasms and to indicate that DNA mismatch repair deficiency accelerates tumorigenesis in Trp53 mutant genetic background.-Fan, H.-H., Yu, I.-S., Lin, Y.-H., Wang, S.-Y., Liaw, Y.-H., Chen, P.-L., Yang, T.-L., Lin, S.-W., Chen, Y.-T. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mutation/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Alleles , Animals , Gene Editing/methods , Gene Targeting/methods , Germ Cells , Mice , Mice, Transgenic/genetics , Mutagenesis/genetics , Oncogenes/genetics , RNA, Guide, Kinetoplastida/genetics
8.
Int J Mol Sci ; 21(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664674

ABSTRACT

Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus (DEPN) which has been recognized as an epileptogenic zone. We generated a forebrain-specific Ctgf knockout (FbCtgf KO) mouse line in which the expression of Ctgf in the DEPN is eliminated. In this study, we adopted a pentylenetetrazole (PTZ)-induced seizure model and found similar severity and latencies to death between FbCtgf KO and WT mice. Interestingly, there was a delay in the seizure reactions in the mutant mice. We further observed reduced c-fos expression subsequent to PTZ treatment in the KO mice, especially in the hippocampus. While the densities of astrocytes and microglia in the hippocampus were kept constant after acute PTZ treatment, microglial morphology was different between genotypes. Our present study demonstrated that in the FbCtgf KO mice, PTZ failed to increase neuronal activity and microglial response in the hippocampus. Our results suggested that inhibition of Ctgf function may have a therapeutic potential in preventing the pathophysiology of epilepsy.


Subject(s)
Astrocytes/physiology , Connective Tissue Growth Factor/deficiency , Genes, fos , Microglia/physiology , Prosencephalon/metabolism , Seizures/physiopathology , Animals , Astrocytes/drug effects , Cell Count , Claustrum/drug effects , Claustrum/metabolism , Connective Tissue Growth Factor/physiology , Convulsants/toxicity , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Pentylenetetrazole/toxicity , Prosencephalon/drug effects , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , Seizures/chemically induced , Seizures/genetics , Seizures/pathology
9.
J Pathol ; 246(3): 289-299, 2018 11.
Article in English | MEDLINE | ID: mdl-30047135

ABSTRACT

Cadherin-17 is an adhesion molecule expressed specifically in intestinal epithelial cells. It is frequently underexpressed in human colorectal cancer. The physiological function of cadherin-17 and its role in tumourigenesis have not yet been determined. We used the transcription activator-like effector nuclease technique to generate a Cdh17 knockout (KO) mouse model. Intestinal tissues were analysed with histological, immunohistochemical and ultrastructural methods. Colitis was induced by oral administration of dextran sulphate sodium (DSS), and, to study effects on intestinal tumourigenesis, mice were given azoxymethane (AOM) and DSS to induce colitis-associated cancer. Cdh17 KO mice were viable and fertile. The histology of their small and large intestines was similar to that of wild-type mice. The junctional architecture of the intestinal epithelium was preserved. The loss of cadherin-17 resulted in increased permeability and susceptibility to DSS-induced colitis. The AOM/DSS model demonstrated that Cdh17 KO enhanced tumour formation and progression in the intestine. Increased nuclear translocation of Yap1, but not of ß-catenin, was identified in the tumours of Cdh17 KO mice. In conclusion, cadherin-17 plays a crucial role in intestinal homeostasis by limiting the permeability of the intestinal epithelium. Cadherin-17 is also a tumour suppressor for intestinal epithelia. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenoma/metabolism , Cadherins/deficiency , Carcinoma/metabolism , Colitis/metabolism , Colorectal Neoplasms/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Tumor Suppressor Proteins/deficiency , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenoma/chemically induced , Adenoma/genetics , Adenoma/pathology , Animals , Azoxymethane , Cadherins/genetics , Carcinoma/chemically induced , Carcinoma/genetics , Carcinoma/pathology , Cell Cycle Proteins , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dextran Sulfate , Disease Models, Animal , Gene Deletion , Genetic Predisposition to Disease , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mice, Knockout , Permeability , Phenotype , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
10.
J Cell Sci ; 128(22): 4196-209, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26430214

ABSTRACT

Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calmodulin/metabolism , Muscle, Skeletal/physiology , Nuclear Proteins/metabolism , Regeneration/physiology , Animals , Mice , Mice, Knockout , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Signal Transduction
11.
Thromb J ; 14(Suppl 1): 22, 2016.
Article in English | MEDLINE | ID: mdl-27766048

ABSTRACT

Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.

12.
Neurobiol Dis ; 77: 35-48, 2015 May.
Article in English | MEDLINE | ID: mdl-25725421

ABSTRACT

Dravet syndrome (DS) is characterized by severe infant-onset myoclonic epilepsy along with delayed psychomotor development and heightened premature mortality. A primary monogenic cause is mutation of the SCN1A gene, which encodes the voltage-gated sodium channel subunit Nav1.1. The nature and timing of changes caused by SCN1A mutation in the hippocampal dentate gyrus (DG) network, a core area for gating major excitatory input to hippocampus and a classic epileptogenic zone, are not well known. In particularly, it is still not clear whether the developmental deficit of this epileptogenic neural network temporally matches with the progress of seizure development. Here, we investigated the emerging functional and structural deficits of the DG network in a novel mouse model (Scn1a(E1099X/+)) that mimics the genetic deficit of human DS. Scn1a(E1099X/+) (Het) mice, similarly to human DS patients, exhibited early spontaneous seizures and were more susceptible to hyperthermia-induced seizures starting at postnatal week (PW) 3, with seizures peaking at PW4. During the same period, the Het DG exhibited a greater reduction of Nav1.1-expressing GABAergic neurons compared to other hippocampal areas. Het DG GABAergic neurons showed altered action potential kinetics, reduced excitability, and generated fewer spontaneous inhibitory inputs into DG granule cells. The effect of reduced inhibitory input to DG granule cells was exacerbated by heightened spontaneous excitatory transmission and elevated excitatory release probability in these cells. In addition to electrophysiological deficit, we observed emerging morphological abnormalities of DG granule cells. Het granule cells exhibited progressively reduced dendritic arborization and excessive spines, which coincided with imbalanced network activity and the developmental onset of spontaneous seizures. Taken together, our results establish the existence of significant structural and functional developmental deficits of the DG network and the temporal correlation between emergence of these deficits and the onset of seizures in Het animals. Most importantly, our results uncover the developmental deficits of neural connectivity in Het mice. Such structural abnormalities likely further exacerbate network instability and compromise higher-order cognitive processing later in development, and thus highlight the multifaceted impacts of Scn1a deficiency on neural development.


Subject(s)
Dentate Gyrus/pathology , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/pathology , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Nerve Net/pathology , Seizures/physiopathology , Action Potentials/drug effects , Action Potentials/genetics , Age Factors , Animals , Animals, Newborn , Dentate Gyrus/growth & development , Disease Models, Animal , Glutamate Decarboxylase/metabolism , Hyperthermia, Induced/adverse effects , In Vitro Techniques , Lysine/analogs & derivatives , Lysine/metabolism , Male , Mice , Mice, Transgenic , Models, Molecular , Neurons/ultrastructure , Seizures/etiology , Seizures/genetics , gamma-Aminobutyric Acid/metabolism
13.
Hum Mol Genet ; 21(19): 4270-85, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22763239

ABSTRACT

Mutation in CUL4B, which encodes a scaffold protein of the E3 ubiquitin ligase complex, has been found in patients with X-linked mental retardation (XLMR). However, early deletion of Cul4b in mice causes prenatal lethality, which has frustrated attempts to characterize the phenotypes in vivo. In this report, we successfully rescued Cul4b mutant mice by crossing female mice in which exons 4-5 of Cul4b were flanked by loxP sequences with Sox2-Cre male mice. In Cul4b-deficient (Cul4b(Δ)/Y) mice, no CUL4B protein was detected in any of the major organs, including the brain. In the hippocampus, the levels of CUL4A, CUL4B substrates (TOP1, ß-catenin, cyclin E and WDR5) and neuronal markers (MAP2, tau-1, GAP-43, PSD95 and syn-1) were not sensitive to Cul4b deletion, whereas the number of parvalbumin (PV)-positive GABAergic interneurons was decreased in Cul4b(Δ)/Y mice, especially in the dentate gyrus (DG). Some dendritic features, including the complexity, diameter and spine density in the CA1 and DG hippocampal neurons, were also affected by Cul4b deletion. Together, the decrease in the number of PV-positive neurons and altered dendritic properties in Cul4b(Δ)/Y mice imply a reduction in inhibitory regulation and dendritic integration in the hippocampal neural circuit, which lead to increased epileptic susceptibility and spatial learning deficits. Our results identify Cul4b(Δ)/Y mice as a potential model for the non-syndromic model of XLMR that replicates the CUL4B-associated MR and is valuable for the development of a therapeutic strategy for treating MR.


Subject(s)
Cullin Proteins/genetics , Disease Models, Animal , Mental Retardation, X-Linked/genetics , Mice , Animals , Cullin Proteins/metabolism , Female , Genetic Engineering , Humans , Male , Mental Retardation, X-Linked/metabolism , Mice/genetics , Mice/metabolism , Mice, Inbred C57BL , Mice, Knockout
14.
Proc Natl Acad Sci U S A ; 108(42): 17538-43, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21972418

ABSTRACT

Na(+)-K(+)-2Cl(-) cotransporters (NKCCs), including NKCC1 and renal-specific NKCC2, and the Na(+)-Cl(-) cotransporter (NCC) play pivotal roles in the regulation of blood pressure (BP) and renal NaCl reabsorption. Oxidative stress-responsive kinase-1 (OSR1) is a known upstream regulator of N(K)CCs. We generated and analyzed global and kidney tubule-specific (KSP) OSR1 KO mice to elucidate the physiological role of OSR1 in vivo, particularly on BP and kidney function. Although global OSR1(-/-) mice were embryonically lethal, OSR1(+/-) mice had low BP associated with reduced phosphorylated (p) STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase (SPAK) and p-NKCC1 abundance in aortic tissue and attenuated p-NKCC2 abundance with increased total and p-NCC expression in the kidney. KSP-OSR1(-/-) mice had normal BP and hypercalciuria and maintained significant hypokalemia on a low-K(+) diet. KSP-OSR1(-/-) mice exhibited impaired Na(+) reabsorption in the thick ascending loop on a low-Na(+) diet accompanied by remarkably decreased expression of p-NKCC2 and a blunted response to furosemide, an NKCC2 inhibitor. The expression of total SPAK and p-SPAK was significantly increased in parallel to that of total NCC and p-NCC despite unchanged total NKCC2 expression. These results suggest that, globally, OSR1 is involved in the regulation of BP and renal tubular Na(+) reabsorption mainly via the activation of NKCC1 and NKCC2. In the kidneys, NKCC2 but not NCC is the main target of OSR1 and the reduced p-NKCC2 in KSP-OSR1(-/-) mice may lead to a Bartter-like syndrome.


Subject(s)
Bartter Syndrome/metabolism , Hypotension/metabolism , Protein Serine-Threonine Kinases/deficiency , Receptors, Drug/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Symporters/metabolism , Animals , Aorta/metabolism , Bartter Syndrome/genetics , Blood Pressure/physiology , Disease Models, Animal , Hypotension/genetics , Kidney Tubules/metabolism , Mice , Mice, Knockout , Phosphorylation , Potassium/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sodium/metabolism , Solute Carrier Family 12, Member 1 , Solute Carrier Family 12, Member 2 , Solute Carrier Family 12, Member 3 , Water-Electrolyte Balance/physiology
15.
J Am Soc Nephrol ; 24(10): 1587-97, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23833262

ABSTRACT

A T60M mutation in the thiazide-sensitive sodium chloride cotransporter (NCC) is common in patients with Gitelman's syndrome (GS). This mutation prevents Ste20-related proline and alanine-rich kinase (SPAK)/oxidative stress responsive kinase-1 (OSR1)-mediated phosphorylation of NCC and alters NCC transporter activity in vitro. Here, we examined the physiologic effects of NCC phosphorylation in vivo using a novel Ncc T58M (human T60M) knock-in mouse model. Ncc(T58M/T58M) mice exhibited typical features of GS with a blunted response to thiazide diuretics. Despite expressing normal levels of Ncc mRNA, these mice had lower levels of total Ncc and p-Ncc protein that did not change with a low-salt diet that increased p-Spak. In contrast to wild-type Ncc, which localized to the apical membrane of distal convoluted tubule cells, T58M Ncc localized primarily to the cytosolic region and caused an increase in late distal convoluted tubule volume. In MDCK cells, exogenous expression of phosphorylation-defective NCC mutants reduced total protein expression levels and membrane stability. Furthermore, our analysis found diminished total urine NCC excretion in a cohort of GS patients with homozygous NCC T60M mutations. When Wnk4(D561A/+) mice, a model of pseudohypoaldosteronism type II expressing an activated Spak/Osr1-Ncc, were crossed with Ncc(T58M/T58M) mice, total Ncc and p-Ncc protein levels decreased and the GS phenotype persisted over the hypertensive phenotype. Overall, these data suggest that SPAK-mediated phosphorylation of NCC at T60 regulates NCC stability and function, and defective phosphorylation at this residue corrects the phenotype of pseudohypoaldosteronism type II.


Subject(s)
Kidney/metabolism , Receptors, Drug/metabolism , Sodium Chloride Symporters/metabolism , Animals , Case-Control Studies , Dogs , Female , Gene Knock-In Techniques , Gitelman Syndrome/genetics , Gitelman Syndrome/metabolism , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mutation , Phenotype , Phosphorylation/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudohypoaldosteronism/metabolism , Receptors, Drug/genetics , Sodium Chloride Symporters/genetics , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 1/metabolism
16.
Thromb Res ; 235: 155-163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341989

ABSTRACT

BACKGROUND AND AIM: Treating hemophilia A patients who develop inhibitors remains a clinical challenge. A mouse model of hemophilia A can be used to test the efficacy of strategies for inhibitor suppression, but the differences in the immune systems of mice and humans limit its utility. To address this shortcoming, we established a humanized NOD/SCID-IL2rγnull hemophilia A (hu-NSG-HA) mouse model with a severely deficient mouse immune system presenting a patient's adapted immune cells. METHODS AND RESULTS: Through intrasplenic injection with patient inhibitor-positive peripheral blood mononuclear cells (PBMCs), utilizing an adeno-associated viral delivery system expressing human BLyS, and regular FVIII challenge, human C19+ B cells were expanded in vivo to secrete anti-FVIII antibodies. Both the inhibitor and the human anti-FVIII IgG, including the predominant subclasses (IgG1 and IgG4) present in the majority of inhibitor patients, were detected in the mouse model. We further segregated and expanded the different clones of human anti-FVIII-secreting cells through subsequent transplantation of splenocytes derived from hu-NSG-HA mice into another NSG-HA mouse. By transplanting a patient's PBMCs into the NSG-HA mouse model, we demonstrated the success of reintroducing a strong anti-FVIII immune response for a short period in mice with the immune systems of inhibitor-positive patients. CONCLUSION: Our results demonstrate a potential tool for directly obtaining functional human-derived antigen-specific antibodies and antibody-secreting cells, which may have therapeutic value for testing patient-specific immune responses to treatment options to assist in clinical decisions.


Subject(s)
Hemophilia A , Humans , Animals , Mice , Mice, Inbred NOD , Mice, SCID , Hemophilia A/drug therapy , Leukocytes, Mononuclear , Immunoglobulin G , Disease Models, Animal
17.
Autophagy ; : 1-20, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245438

ABSTRACT

Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.

18.
Neurobiol Dis ; 52: 177-90, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23275025

ABSTRACT

Aromatic l-amino acid decarboxylase (AADC) is responsible for the syntheses of dopamine and serotonin. Children with AADC deficiency exhibit compromised development, particularly with regard to their motor functions. Currently, no animal model of AADC deficiency exists. We inserted an AADC gene mutation (IVS6+4A>T) and a neomycin-resistance gene into intron 6 of the mouse AADC (Ddc) gene. In the brains of homozygous knock-in (KI) mice (Ddc(IVS6/IVS6)), AADC mRNA lacked exon 6, and AADC activity was <0.3% of that in wild-type mice. Half of the KI mice were born alive but grew poorly and exhibited severe dyskinesia and hindlimb clasping after birth. Two-thirds of the live-born KI mice survived the weaning period, with subsequent improvements in their growth and motor functions; however, these mice still displayed cardiovascular dysfunction and behavioral problems due to serotonin deficiencies. The brain dopamine levels in the KI mice increased from 9.39% of the levels in wild-type mice at 2weeks of age to 37.86% of the levels in wild-type mice at 8weeks of age. Adult KI mice also exhibited an exaggerated response to apomorphine and an elevation of striatal c-Fos expression, suggesting post-synaptic adaptations. Therefore, we generated an AADC deficient mouse model, in which compensatory regulation allowed the mice to survive to adulthood. This mouse model will be useful both for developing gene therapies for AADC deficiency and for designing treatments for diseases associated with neurotransmitter deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Dopamine/metabolism , Dyskinesias/metabolism , Neostriatum/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Disease Models, Animal , Dopamine/genetics , Dyskinesias/genetics , Gene Knock-In Techniques , Mice
19.
Hepatology ; 56(5): 1913-23, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22505209

ABSTRACT

UNLABELLED: The liver architecture plays an important role in maintaining hemodynamic balance, but the mechanisms that underlie this role are not fully understood. Hepsin, a type II transmembrane serine protease, is predominantly expressed in the liver, but has no known physiological functions. Here, we report that hemodynamic balance in the liver is regulated through hepsin. Deletion of hepsin (hepsin(-/-) ) in mice resulted in enlarged hepatocytes and narrowed liver sinusoids. Using fluorescent microbeads and antihepsin treatment, we demonstrated that metastatic cancer cells preferentially colonized the hepsin(-/-) mouse liver as a result of the retention of tumor cells because of narrower sinusoids. The enlarged hepatocytes expressed increased levels of connexin, which resulted from defective prohepatocyte growth factor (pro-HGF) processing and decreased c-Met phosphorylation in the livers of hepsin(-/-) mice. Treatment of hepsin(-/-) mice with recombinant HGF rescued these phenotypes, and treatment of wild-type mice with an HGF antagonist recapitulated the phenotypes observed in hepsin(-/-) mice. CONCLUSION: Our findings show that the maintenance of hepatic structural homeostasis occurs through HGF/c-Met/connexin signaling by hepsin, and hepsin-mediated changes in liver architecture significantly enhance tumor metastasis to the liver.


Subject(s)
Hepatocyte Growth Factor/metabolism , Hepatocytes/pathology , Liver Neoplasms/secondary , Liver/metabolism , Liver/pathology , Neoplasm Metastasis/pathology , Serine Endopeptidases/metabolism , Animals , Connexins/metabolism , Hemodynamics , Hepatocyte Growth Factor/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Neoplasm Transplantation , Phosphorylation , Proto-Oncogene Proteins c-met/metabolism , Serine Endopeptidases/genetics , Signal Transduction
20.
Int J Mol Sci ; 14(11): 22102-16, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24213608

ABSTRACT

The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/- chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and ß-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and ß-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and ß-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and ß-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and ß-tubulins, in SEPTIN12+/+/+/- chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis.


Subject(s)
Microtubules/metabolism , Multiprotein Complexes/metabolism , Septins/metabolism , Spermatogenesis , Animals , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Microtubules/chemistry , Multiprotein Complexes/chemistry , Septins/chemistry , Sperm Head/chemistry , Sperm Head/metabolism , Sperm Head/ultrastructure , Sperm Tail/chemistry , Sperm Tail/metabolism , Sperm Tail/ultrastructure , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL