Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Plant Cell ; 34(3): 1020-1037, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34931682

ABSTRACT

Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Rhythm/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Hypocotyl/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Plant Cell Environ ; 47(3): 976-991, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164069

ABSTRACT

Mosses are vital components of ecosystems, exhibiting remarkable adaptability across diverse habitats from deserts to polar ice caps. Sanionia uncinata (Hedw.) Loeske, a dominant Antarctic moss survives extreme environmental condition through perennial lifecycles involving growth and dormancy alternation. This study explores genetic controls and molecular mechanisms enabling S. uncinata to cope with seasonality of the Antarctic environment. We analysed the seasonal transcriptome dynamics of S. uncinata collected monthly from February 2015 to January 2016 in King George Island, Antarctica. Findings indicate that genes involved in plant growth were predominantly upregulated in Antarctic summer, while those associated with protein synthesis and cell cycle showed marked expression during the winter-to-summer transition. Genes implicated in cellular stress and abscisic acid signalling were highly expressed in winter. Further, validation included a comparison of the Antarctic field transcriptome data with controlled environment simulation of Antarctic summer and winter temperatures, which revealed consistent gene expression patterns in both datasets. This proposes a seasonal gene regulatory model of S. uncinate to understand moss adaptation to extreme environments. Additionally, this data set is a valuable resource for predicting genetic responses to climatic fluctuations, enhancing our knowledge of Antarctic flora's resilience to global climate change.


Subject(s)
Bryophyta , Bryophyta/genetics , Ecosystem , Antarctic Regions , Snow , Extreme Environments , Gene Expression Profiling
3.
Mol Ther ; 30(1): 119-129, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34058389

ABSTRACT

Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.


Subject(s)
Adrenoleukodystrophy , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/therapy , Animals , Fatty Acids , Gene Editing , Genetic Therapy , Humans , Mice
4.
Nucleic Acids Res ; 49(17): 10150-10165, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34469538

ABSTRACT

I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure 'adenine:cytosine-motif (AC-motif)'. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson-Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.


Subject(s)
DNA/chemistry , Gene Expression Regulation/genetics , Nucleotide Motifs/genetics , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/genetics , Adenine/chemistry , Base Pairing/genetics , Base Sequence/genetics , Cytosine/chemistry , G-Quadruplexes , Gene Editing , Humans , Magnesium/chemistry , Nucleic Acid Conformation , Oligodeoxyribonucleotides/genetics
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35806003

ABSTRACT

The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9-16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2-4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.


Subject(s)
Brassica rapa , Brassica , Brassica/genetics , Brassica rapa/genetics , CRISPR-Cas Systems , China , Circadian Rhythm/physiology , Gene Expression Regulation, Plant , Mutagenesis , Plant Breeding , RNA, Messenger
6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613549

ABSTRACT

Stay-green 1 (SGR1) protein is a critical regulator of chlorophyll degradation and senescence in plant leaves; however, the functions of tomato SGR1 remain ambiguous. Here, we generated an SGR1-knockout (KO) null line via clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated gene editing and conducted RNA sequencing and gas chromatography−tandem mass spectrometry analysis to identify the differentially expressed genes (DEGs). Solanum lycopersicum SGR1 (SlSGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid levels than those in the wild-type (WT) fruit. Differential gene expression analysis revealed 728 DEGs between WT and sgr#1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, with fold-change >2 and adjusted p-value < 0.05. Most of the DEGs have functions related to photosynthesis, chloroplasts, and carotenoid biosynthesis. The strong changes in pigment and carotenoid content resulted in the accumulation of key primary metabolites, such as sucrose and its derivatives (fructose, galactinol, and raffinose), glycolytic intermediates (glucose, glucose-6-phosphate, and fructose-6-phosphate), and tricarboxylic acid cycle intermediates (malate and fumarate) in the leaves and fruit of the SGR-KO null lines. Overall, the SGR1-KO null lines developed here provide new evidence for the mechanisms underlying the roles of SGR1 as well as the molecular pathways involved in photosynthesis, chloroplasts, and carotenoid biosynthesis.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Transcriptome , CRISPR-Cas Systems/genetics , Gas Chromatography-Mass Spectrometry , Carotenoids/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142294

ABSTRACT

Lycopene epsilon-cyclase (LcyE) is a key enzyme in the carotenoid biosynthetic pathway of higher plants. Using the CRSPR/Cas9 and the geminiviral replicon, we optimized a method for targeted mutagenesis and golden SNP replacement of the LcyE gene in rice. We have exploited the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene via homology-directed repair (HDR). Mutagenesis experiments performed on the Donggin variety achieved precise modification of the LcyE loci with an efficiency of up to 90%. In HDR experiments, our target was the LcyE allele (LcyE-H523L) derived from anther culture containing a golden SNP replacement. The phenotype of the homologous recombination (HR) mutant obtained through the geminiviral replicon-based template delivery system was tangerine color, and the frequency was 1.32% of the transformed calli. In addition, the total carotenoid content of the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines was 6.8-9.6 times higher than that of the wild-type (WT) calli, respectively. The reactive oxygen species content was lower in the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines. These results indicate that efficient HDR can be achieved in the golden SNP replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.


Subject(s)
Gene Editing , Oryza , CRISPR-Cas Systems , Carotenoids , DNA , Gene Editing/methods , Intramolecular Lyases , Oryza/genetics , Reactive Oxygen Species , Replicon/genetics
8.
Plant Cell Rep ; 40(6): 1037-1045, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32959126

ABSTRACT

KEY MESSAGE: We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T0 plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques/methods , Genes, Duplicate , Petunia/genetics , Pigmentation/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/isolation & purification , Gene Editing/methods , Genes, Plant , Mutagenesis, Site-Directed , Petunia/physiology , Plants, Genetically Modified/genetics , Protoplasts/cytology , Protoplasts/physiology , RNA, Guide, Kinetoplastida , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
9.
Plant Cell Rep ; 40(6): 1013-1024, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32980909

ABSTRACT

KEY MESSAGE: The altered rice leaf color based on the knockout of CAO1 gene generated using CRISPR/Cas9 technology plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced senescence in rice. Rice chlorophyllide a oxygenase (OsCAO1), identified as the chlorophyll b synthesis under light condition, plays a critical role in regulating rice plant photosynthesis. In this study, the development of edited lines with pale green leaves by knockout of OsCAO1 gene known as a chlorophyll synthesis process is reported. Eighty-one genetically edited lines out of 181 T0 plants were generated through CRISPR/Cas9 system. The edited lines have short narrow flag leaves and pale green leaves compared with wild-type 'Dongjin' plants (WT). Additionally, edited lines have lower chlorophyll b and carotenoid contents both at seedling and mature stages. A transcriptome analysis identified 580 up-regulated and 206 downregulated genes in the edited lines. The differentially expressed genes (DEGs) involved in chlorophyll biosynthesis, magnesium chelatase subunit (CHLH), and glutamate-1-semialdehyde2, 1-aminomutase (GSA) metabolism decreased significantly. Meanwhile, the gel consistency (GC) levels of rice grains, chalkiness ratios and chalkiness degrees (CD) decreased in the edited lines. Thus, knockout of OsCAO1 influenced growth period, leaf development and grain quality characters of rice. Overall, the result suggests that OsCAO1 also plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced rice senescence.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques/methods , Oryza/physiology , Chlorophyll/biosynthesis , Chlorophyll/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Homozygote , Mutation Rate , Oryza/genetics , Phenotype , Plants, Genetically Modified
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203807

ABSTRACT

Genome editing using CRISPR-Cas9 nucleases is based on the repair of the DNA double-strand break (DSB). In eukaryotic cells, DSBs are rejoined through homology-directed repair (HDR), non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ) pathways. Among these, it is thought that the NHEJ pathway is dominant and occurs throughout a cell cycle. NHEJ-based DSB repair is known to be error-prone; however, there are few studies that delve into it deeply in endogenous genes. Here, we quantify the degree of NHEJ-based DSB repair accuracy (termed NHEJ accuracy) in human-originated cells by incorporating exogenous DNA oligonucleotides. Through an analysis of joined sequences between the exogenous DNA and the endogenous target after DSBs occur, we determined that the average value of NHEJ accuracy is approximately 75% in maximum in HEK 293T cells. In a deep analysis, we found that NHEJ accuracy is sequence-dependent and the value at the DSB end proximal to a protospacer adjacent motif (PAM) is relatively lower than that at the DSB end distal to the PAM. In addition, we observed a negative correlation between the insertion mutation ratio and the degree of NHEJ accuracy. Our findings would broaden the understanding of Cas9-mediated genome editing.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Cleavage , DNA End-Joining Repair/genetics , Base Sequence , DNA/metabolism , HEK293 Cells , HeLa Cells , Humans , Mutation/genetics , Oligonucleotides/metabolism , RNA, Guide, Kinetoplastida/genetics , Sequence Deletion/genetics
11.
Mol Ther ; 27(8): 1364-1371, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31164261

ABSTRACT

A nonsense mutation is a substitutive mutation in a DNA sequence that causes a premature termination during translation and produces stalled proteins, resulting in dysfunction of a gene. Although it usually induces severe genetic disorders, there are no definite methods for inducing read through of premature termination codons (PTCs). Here, we present a targeted tool for bypassing PTCs, named CRISPR-pass, that uses CRISPR-mediated adenine base editors. CRISPR-pass, which should be applicable to 95.5% of clinically significant nonsense mutations in the ClinVar database, rescues protein synthesis in patient-derived fibroblasts, suggesting potential clinical utility.


Subject(s)
Adenine , Clustered Regularly Interspaced Short Palindromic Repeats , Codon, Nonsense , Gene Editing , Cell Line , Databases, Genetic , Fibroblasts , Genes, Reporter , Humans , Protein Biosynthesis/genetics , RNA, Messenger/genetics
12.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32752068

ABSTRACT

The rice SLR1 gene encodes the DELLA protein, and a loss-of-function mutation is dwarfed by inhibiting plant growth. We generate slr1-d mutants with a semi-dominant dwarf phenotype to target mutations of the DELLA/TVHYNP domain using CRISPR/Cas9 genome editing in rice. Sixteen genetic edited lines out of 31 transgenic plants were generated. Deep sequencing results showed that the mutants had six different mutation types at the target site of the TVHYNP domain of the SLR1 gene. The homo-edited plants selected individuals without DNA (T-DNA) transcribed by segregation in the T1 generation. The slr1-d7 and slr1-d8 plants caused a gibberellin (GA)-insensitive dwarf phenotype with shrunken leaves and shortened internodes. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two GA-related genes, GA20OX2 (Gibberellin oxidase) and GA3OX2, were increased in the edited mutant plants, suggesting that GA20OX2 acts as a convert of GA12 signaling. These mutant plants are required by altering GA responses, at least partially by a defect in the phytohormone signaling system process and prevented cell elongation. The new mutants, namely, the slr1-d7 and slr1-d8 lines, are valuable semi-dominant dwarf alleles with potential application value for molecule breeding using the CRISPR/Cas9 system in rice.


Subject(s)
Oryza/genetics , Plant Growth Regulators/genetics , Plant Proteins/genetics , Transcriptome/genetics , Alleles , Amino Acid Sequence/genetics , CRISPR-Cas Systems/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gibberellins/metabolism , Mutation/genetics , Oryza/growth & development , Phenotype , Plant Growth Regulators/metabolism , Plants, Genetically Modified/genetics , Signal Transduction/genetics
13.
BMC Bioinformatics ; 19(1): 542, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30587106

ABSTRACT

BACKGROUND: As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed. RESULTS: We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (< 1 GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer /, respectively. CONCLUSION: We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Internet/instrumentation , Humans
14.
J Exp Bot ; 69(5): 1147-1158, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29300952

ABSTRACT

Nuclear-encoded light-harvesting chlorophyll- and carotenoid-binding proteins (LHCPs) are imported into the chloroplast and transported across the stroma to thylakoid membrane assembly sites by the chloroplast signal recognition particle (CpSRP) pathway. The LHCP translocation defect (LTD) protein is essential for the delivery of imported LHCPs to the CpSRP pathway in Arabidopsis. However, the function of the LTD protein in Chlamydomonas reinhardtii has not been investigated. Here, we generated a C. reinhardtii ltd (Crltd) knockout mutant by using CRISPR-Cas9, a new target-specific knockout technology. The Crltd1 mutant showed a low chlorophyll content per cell with an unusual increase in appressed thylakoid membranes and enlarged cytosolic vacuoles. Profiling of thylakoid membrane proteins in the Crltd1 mutant showed a more severe reduction in the levels of photosystem I (PSI) core proteins and absence of functional LHCI compared with those of photosystem II, resulting in a much smaller PSI pool size and diminished chlorophyll antenna size. The lack of CrLTD did not prevent photoautotrophic growth of the cells. These results are substantially different from those for Arabidopsis ltd null mutant, indicating LTD function in LHCP delivery and PSI assembly may not be as stringent in C. reinhardtii as it is in higher plants.


Subject(s)
Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chloroplast Proteins/genetics , Light-Harvesting Protein Complexes/genetics , Photosystem I Protein Complex/genetics , Sequence Deletion , Algal Proteins/metabolism , Base Sequence , Chlamydomonas reinhardtii/metabolism , Chloroplast Proteins/metabolism , DNA, Plant/analysis , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolism
15.
Biotechnol Bioeng ; 115(3): 719-728, 2018 03.
Article in English | MEDLINE | ID: mdl-29150930

ABSTRACT

Lutein and zeaxanthin are dietary carotenoids reported to be protective against age-related macular degeneration. Recently, the green alga Chlamydomonas reinhardtii has received attention as a photosynthetic cell factory, but the potential of this alga for carotenoid production has not yet been evaluated. In this study, we selected the C. reinhardtii CC-4349 strain as the best candidate among seven laboratory strains tested for carotenoid production. A knock-out mutant of the zeaxanthin epoxidase gene induced by preassembled DNA-free CRISPR-Cas9 ribonucleoproteins in the CC-4349 strain had a significantly higher zeaxanthin content (56-fold) and productivity (47-fold) than the wild type without the reduction in lutein level. Furthermore, we produced eggs fortified with lutein (2-fold) and zeaxanthin (2.2-fold) by feeding hens a diet containing the mutant. Our results clearly demonstrate the possibility of cost-effective commercial use of microalgal mutants induced by DNA-free CRISPR-Cas9 ribonucleoproteins in algal biotechnology for the production of high-value products.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Lutein , Mutagenesis , Zeaxanthins , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Lutein/biosynthesis , Lutein/genetics , Zeaxanthins/biosynthesis , Zeaxanthins/genetics
17.
BMB Rep ; 57(2): 79-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303561

ABSTRACT

Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].


Subject(s)
Oryza , Oryza/genetics , CRISPR-Cas Systems/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Phenotype
18.
Dev Cell ; 14(2): 183-92, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18267087

ABSTRACT

Jasmonic acid (JA) plays pivotal roles in diverse plant biological processes, including wound response. Chloroplast lipid hydrolysis is a critical step for JA biosynthesis, but the mechanism of this process remains elusive. We report here that DONGLE (DGL), a homolog of DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), encodes a chloroplast-targeted lipase with strong galactolipase and weak phospholipase A(1) activity. DGL is expressed in the leaves and has a specific role in maintaining basal JA content under normal conditions, and this expression regulates vegetative growth and is required for a rapid JA burst after wounding. During wounding, DGL and DAD1 have partially redundant functions for JA production, but they show different induction kinetics, indicating temporally separated roles: DGL plays a role in the early phase of JA production, and DAD1 plays a role in the late phase of JA production. Whereas DGL and DAD1 are necessary and sufficient for JA production, phospholipase D appears to modulate wound response by stimulating DGL and DAD1 expression.


Subject(s)
Arabidopsis/genetics , Carboxylic Ester Hydrolases/genetics , Cyclopentanes/metabolism , Genes, Plant , Genetic Variation , Oxylipins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant , Organ Specificity , Phenotype , Phospholipase D/metabolism , Phospholipases A/metabolism , Phospholipases A1/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Seedlings/ultrastructure , Transcriptional Activation/genetics
19.
Mol Metab ; 76: 101784, 2023 10.
Article in English | MEDLINE | ID: mdl-37524243

ABSTRACT

OBJECTIVE: Alterations in lipid metabolism are associated with aging and age-related diseases. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process involved in specific protein degradation. Heat shock cognate 71 kDa protein (Hsc70) recognizes cytosolic proteins with KFERQ motif and allows them to enter the lysosome via lysosome-associated membrane glycoprotein 2 isoform A (LAMP2A). CMA deficiency is associated with dysregulated lipid metabolism in the liver. In this study, we examined the effect of CMA on lipid metabolism in the aged liver. METHODS: 12-week-old and 88-week-old mice were employed to assess the effect of aging on hepatic CMA activity. We generated CMA-deficient mouse primary hepatocytes using siRNA for Lamp2a and liver-specific LAMP2A knockdown mice via adeno-associated viruses expressing short hairpin RNAs to investigate the influence of CMA on lipid metabolism. RESULTS: We noted aging-induced progression toward fatty liver and a decrease in LAMP2A levels in total protein and lysosomes. The expression of genes associated with fatty acid oxidation was markedly downregulated in the aged liver, as verified in CMA-deficient mouse primary hepatocytes. In addition, the aged liver accumulated nuclear receptor corepressor 1 (NCoR1), a negative regulator of peroxisome proliferator-activated receptor α (PPARα). We found that Hsc70 binds to NCoR1 via the KFERQ motif. Lamp2a siRNA treatment accumulated NCoR1 and decreased the fatty acid oxidation rate. Pharmacological activation of CMA by AR7 treatment increased LAMP2A expression, leading to NCoR1 degradation. A liver-specific LAMP2A knockdown via adeno-associated viruses expressing short hairpin RNAs caused NCoR1 accumulation, inactivated PPARα, downregulated the expression of fatty acid oxidation-related genes and significantly increased liver triglyceride levels. CONCLUSIONS: Our results elucidated a novel PPARα regulatory mechanism involving CMA-mediated NCoR1 degradation during aging. These findings demonstrate that CMA dysregulation is crucial for the progression of aging-related fatty liver diseases.


Subject(s)
Chaperone-Mediated Autophagy , Animals , Mice , Autophagy , PPAR alpha/genetics , Aging , Liver , Lipid Metabolism , Fatty Acids/pharmacology
20.
Plant Physiol ; 156(4): 1867-77, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21653190

ABSTRACT

A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Body Patterning/genetics , DNA-Binding Proteins/metabolism , Flowers/physiology , Plant Roots/growth & development , RNA Stability/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant/genetics , Mutation/genetics , Photoperiod , Plant Roots/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL