Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.517
Filter
Add more filters

Publication year range
1.
Cell ; 173(2): 417-429.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625056

ABSTRACT

Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.


Subject(s)
Antibodies, Monoclonal/immunology , Influenza, Human/pathology , Neuraminidase/immunology , Viral Proteins/immunology , Animals , Birds , Cross Reactions , Epitopes/immunology , Female , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza, Human/immunology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control
2.
Nature ; 630(8015): 247-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750358

ABSTRACT

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.


Subject(s)
Antidepressive Agents , Cryoelectron Microscopy , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Protein Multimerization , Humans , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Cholesterol/metabolism , Cholesterol/chemistry , Models, Molecular , Norepinephrine/metabolism , Norepinephrine/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/ultrastructure , Protein Binding , Substrate Specificity
3.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32553276

ABSTRACT

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Subject(s)
Dendritic Cells/immunology , Keratinocytes/metabolism , Phosphoprotein Phosphatases/deficiency , Polyamines/metabolism , Psoriasis/pathology , RNA/immunology , 3T3 Cells , Animals , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginine/metabolism , Autoantigens/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Disease Models, Animal , HEK293 Cells , HaCaT Cells , Humans , Interleukin-17/metabolism , Macaca fascicularis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Phosphorylation , Skin/pathology , Toll-Like Receptor 7/immunology
4.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096040

ABSTRACT

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Orthomyxoviridae/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Genes, Immunoglobulin , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae/classification , Protein Domains , Somatic Hypermutation, Immunoglobulin
5.
Nature ; 602(7896): 314-320, 2022 02.
Article in English | MEDLINE | ID: mdl-34942633

ABSTRACT

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Epitopes/chemistry , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Memory B Cells/immunology
6.
Proc Natl Acad Sci U S A ; 121(4): e2315592121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227652

ABSTRACT

γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.


Subject(s)
Blood Group Antigens , Receptors, Antigen, T-Cell, gamma-delta , Humans , Mice , Animals , Antigens , Haptens
7.
Development ; 150(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37882667

ABSTRACT

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Subject(s)
Cartilage, Articular , Animals , Mice , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Stem Cells , Cell Differentiation/genetics , Cell Line , Disease Models, Animal , Chondrogenesis/genetics
8.
Plant Cell ; 35(5): 1474-1495, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36781400

ABSTRACT

The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Ascorbic Acid , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Division , Cell Differentiation/genetics , Homeostasis , Gene Expression Regulation, Plant
9.
Nature ; 580(7803): E7, 2020 04.
Article in English | MEDLINE | ID: mdl-32296181

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nature ; 579(7798): 265-269, 2020 03.
Article in English | MEDLINE | ID: mdl-32015508

ABSTRACT

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Subject(s)
Betacoronavirus/classification , Communicable Diseases, Emerging/complications , Communicable Diseases, Emerging/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Adult , Betacoronavirus/genetics , COVID-19 , China , Communicable Diseases, Emerging/diagnostic imaging , Communicable Diseases, Emerging/pathology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Genome, Viral/genetics , Humans , Lung/diagnostic imaging , Male , Phylogeny , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , RNA, Viral/genetics , Recombination, Genetic/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnostic imaging , Severe Acute Respiratory Syndrome/pathology , Tomography, X-Ray Computed , Whole Genome Sequencing
11.
Hum Mol Genet ; 32(3): 462-472, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36001342

ABSTRACT

YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.


Subject(s)
Intellectual Disability , Nervous System Malformations , Child , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , 14-3-3 Proteins/genetics , Mutation, Missense , Brain , Developmental Disabilities/genetics , Developmental Disabilities/complications
12.
Development ; 149(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35005773

ABSTRACT

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Subject(s)
Cell Differentiation , Fibroblasts/cytology , Hyaline Cartilage/cytology , Regeneration , Tissue Engineering/methods , Animals , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrogenesis , Fibroblasts/drug effects , Growth Differentiation Factor 2/pharmacology , Hyaline Cartilage/metabolism , Hyaline Cartilage/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID
13.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38546211

ABSTRACT

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Subject(s)
Dengue Virus , Dengue , Piperidines , Animals , Mice , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Communicable Diseases , Dengue/drug therapy , Dengue Virus/physiology , Endopeptidases/pharmacology , Mice, Inbred ICR , Piperidines/administration & dosage , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
14.
J Immunol ; 211(4): 576-590, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37427982

ABSTRACT

TLR signaling in B cells triggers their activation and differentiation independent of help from T cells. Plasmacytoid dendritic cells (pDCs) cooperate with B cells to boost TLR-stimulated T-independent humoral immunity; however, the molecular mechanisms remain elusive. In this study, we demonstrate that in the mouse system, the adjuvant effects of pDCs also occurred following challenge with pathogens and that follicular (FO) B cells were more sensitive to pDC-induced enhancement than were marginal zone (MZ) B cells. Moreover, pDCs migrated to the FO zones and interacted with FO B cells upon stimulation in vivo. CXCL10, a ligand for CXCR3 expressed on pDCs, was superinduced in the coculture system and facilitated the cooperative activation of B cells. Moreover, pDCs also promoted TLR-stimulated autoantibody production in FO B and MZ B cells. Ingenuity Pathway Analysis and gene set enrichment analysis revealed that type I IFN (IFN-I)-mediated JAK-STAT and Ras-MAPK pathways were highly enriched in R848-stimulated B cells cocultured with pDCs compared with B cells alone. Whereas IFN-I receptor 1 deficiency reduced pDC-enhanced B cell responses, STAT1 deficiency displayed a more pronounced defect. One of the STAT1-dependent but IFN-I-independent mechanisms was TLR-induced STAT1-S727 phosphorylation by p38 MAPK. Serine 727 to alanine mutation attenuated the synergism between pDCs and B cells. In conclusion, we uncover a molecular mechanism for pDC-enhanced B cell response and define a crucial role of the IFN-I/TLR-mediated signaling pathway through a p38 MAPK-STAT1 axis in controlling T-independent humoral immunity and providing a novel therapeutic target for treating autoimmune diseases.


Subject(s)
Interferon Type I , p38 Mitogen-Activated Protein Kinases , Mice , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Interferon Type I/metabolism , Phosphorylation , Dendritic Cells
15.
J Biol Chem ; 299(9): 105126, 2023 09.
Article in English | MEDLINE | ID: mdl-37543362

ABSTRACT

Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.


Subject(s)
Aging , Apoptosis , Granulosa Cells , Hydrogen Peroxide , Kruppel-Like Transcription Factors , Lysophospholipids , Phosphotransferases (Alcohol Group Acceptor) , Sphingosine , Female , Humans , Aging/metabolism , Feedback, Physiological , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lysophospholipids/biosynthesis , Lysophospholipids/metabolism , Organ Culture Techniques , Oxidative Stress/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Promoter Regions, Genetic , Sphingosine/biosynthesis , Sphingosine/metabolism , Reactive Oxygen Species/metabolism
16.
Circulation ; 148(7): 589-606, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37203562

ABSTRACT

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Subject(s)
Aortic Dissection , Muscle, Smooth, Vascular , Animals , Humans , Mice , Aortic Dissection/genetics , MAP Kinase Signaling System , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation
17.
Stroke ; 55(1): 92-100, 2024 01.
Article in English | MEDLINE | ID: mdl-38018834

ABSTRACT

BACKGROUND: Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS: This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS: Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS: Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.


Subject(s)
Air Pollutants , Air Pollution , Atrial Fibrillation , Diabetes Mellitus, Type 2 , Stroke , Adult , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies , Atrial Fibrillation/complications , Genome-Wide Association Study , Environmental Exposure/adverse effects , Incidence , Stroke/epidemiology , Stroke/genetics , Stroke/chemically induced , Air Pollution/adverse effects , Risk Factors , Genetic Predisposition to Disease , Triglycerides , Air Pollutants/adverse effects
18.
Plant Cell Physiol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545690

ABSTRACT

The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.

19.
Anal Chem ; 96(3): 1112-1120, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38181398

ABSTRACT

Oblique-incidence reflectivity difference (OIRD) is a novel real-time, label-free, and nondestructive optical detection method and exhibits encouraging application in the detection of antibody/DNA microarrays. In this study, for the first time, an OIRD label-free immunoassay was achieved by using adherent live cells as the probe. The cells were cultured on glass cells, and the affinity binding of antibodies targeted on the HLA class I antigen of the cell surface was detected with an OIRD. The results show that an OIRD is able to detect the binding process of anti-human HLA-A, B, and C antibodies on MDA-MB-231 cells and HUVEC cells. Control experiments and complementary fluorescence analysis confirmed the high detection specificity and good quantitative virtue of the OIRD label-free immunoassay. Label-free OIRD imaging analysis of cell microarrays was further demonstrated successfully, and the underlying optical mechanism was revealed by combining the theoretical modeling. This work explores the use of live cells as probes for an OIRD immunoassay, thus expanding the potential applications of the OIRD in the field of pathological analysis, disease diagnosis, and drug screening, among others.


Subject(s)
Antibodies , Glass , Oligonucleotide Array Sequence Analysis , Immunoassay
20.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704891

ABSTRACT

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Subject(s)
Glycosides , Hyperuricemia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyrans , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid/blood , Male , Glycosides/pharmacology , Glycosides/therapeutic use , Pyrans/pharmacology , Pyrans/therapeutic use , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL