Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanoscale ; 16(16): 8119-8131, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567547

ABSTRACT

Electrocatalytic CO2 reduction (CO2RR) has emerged as a promising approach for converting CO2 into valuable chemicals and fuels to achieve a sustainable carbon cycle. However, the development of efficient electrocatalysts with high current densities and superior product selectivity remains a significant challenge. In this study, we present the synthesis of a porous nitrogen-doped carbon nanosheet loaded with heterostructured Ni/Ni3ZnC0.7 nanoparticles through a facile hydrothermal-calcination method (Ni/Ni3ZnC0.7-NC). Remarkably, the Ni/Ni3ZnC0.7-NC catalyst exhibits outstanding performance towards CO2RR in an H-cell, demonstrating a high CO faradaic efficiency of 92.47% and a current density (jCO) of 15.77 mA cm-2 at 0.87 V vs. RHE. To further explore its potential industrial applications, we constructed a flow cell and a rechargeable Zn-CO2 flow cell utilizing the Ni/Ni3ZnC0.7-NC catalyst as the cathode. Impressively, not only does the Ni/Ni3ZnC0.7-NC catalyst achieve an industrial high current density of 254 mA cm-2 at a voltage of -1.19 V vs. RHE in the flow cell, but it also exhibits a maximum power density of 4.2 mW cm-2 at 22 mA cm-2 in the Zn-CO2 flow cell, while maintaining excellent rechargeability. Density functional theory (DFT) calculations indicate that Ni/Ni3ZnC0.7-NC possesses more spontaneous reaction pathways for CO2 reduction to CO, owing to its heterogeneous structure in contrast to Ni3ZnC0.7-NC and Ni-NC. Consequently, Ni/Ni3ZnC0.7-NC demonstrates accelerated CO2RR reaction kinetics, resulting in improved catalytic activity and selectivity for CO2RR.

SELECTION OF CITATIONS
SEARCH DETAIL