Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Langmuir ; 40(2): 1266-1276, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38157426

ABSTRACT

Liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) has emerged as a fundamental principle underpinning cellular function and malfunction. However, we know little about the FUS phase transition process from individual molecules to nanoscale condensates, which plays important roles in neurodegenerative diseases. Here, we propose the fluorescence correlation spectroscopy (FCS) method to quantitatively study the phase separation process of FUS protein with the fluorescent tag-enhanced green fluorescent protein (EGFP), from individual molecules to nanoscale condensates. The characteristic diffusion time (τD) of the protein condensates can be obtained from the FCS curve, which increases with the growth of the protein hydration radius. The bigger the τD value of the protein condensates, the larger the condensates formed by the phase separation of FUS. By this method, we discovered that the critical concentration for FUS to phase separation was 20 nM. We then plotted FUS phase diagrams based on τD under different concentrations of NaCl and found that both low-salt and high-salt concentrations tended to promote FUS-EGFP phase separation. Our results showed that ATP has a good inhibitory effect on FUS phase separation, and its inhibition constant IC50 was 3.2 mM. Finally, we evaluated the inhibition efficiency of single-stranded DNA sequences (ssDNA) on FUS phase separation and demonstrated that ssDNA containing three copies of TCCCCGT had relatively strong inhibition efficiency. In summary, our work provides detailed insight into the FUS phase transition process from individual molecules to nanoscale condensates at nanomolar concentrations and can be exploited for drug screening of neurodegenerative diseases.


Subject(s)
RNA-Binding Protein FUS , Humans , Neurodegenerative Diseases/metabolism , Phase Separation , Spectrum Analysis , RNA-Binding Protein FUS/chemistry
2.
J Org Chem ; 89(5): 3563-3572, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38335535

ABSTRACT

We report herein the first examples of electrochemical radical retro-allylation of homoallylic alcohols via the cleavage of the C(sp3)-C(sp3) bond. In this reaction, a variety of sulfonyl hydrazides were employed as the environmentally friendly radical sources via an electrochemical dehydrazination with the release of N2 and H2 as the byproducts, leading to sulfonyl allylic compounds in moderate to good yields. The reaction features metal- and base-free reaction conditions, broad functional group tolerance, and a broad substrate scope.

3.
J Org Chem ; 89(14): 10054-10065, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38946235

ABSTRACT

We present a PPh3/DDQ-mediated regiospecific selective N-functionalization of arylhydrazines with primary benzylic alcohols and aryl carboxylic acids for the synthesis of N1-benzyl arylhydrazines and N2-acyl arylhydrazines, respectively. This metal- and base-free approach features very short reaction times (about 10 min), broad substrate scope, good functional group tolerance, and mild reaction conditions. Furthermore, N1-benzlated products have also been successfully applied to the concise synthesis of N-substituted indoles and anticancer drug MDM2 inhibitor.

4.
Analyst ; 149(9): 2719-2727, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38525957

ABSTRACT

Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to ß-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.


Subject(s)
Green Fluorescent Proteins , Spectrometry, Fluorescence , Spectrometry, Fluorescence/methods , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Red Fluorescent Protein , Phase Separation
5.
Angew Chem Int Ed Engl ; 63(16): e202319982, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38361437

ABSTRACT

Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.


Subject(s)
Nanotechnology , Neoplasms , Animals , Mice , Metals , Catalysis , Neoplasms/drug therapy , Nanomedicine
6.
Sci Rep ; 14(1): 17978, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095451

ABSTRACT

In this paper, a combination of theoretical modeling, finite element simulation, and experimental methods is employed to investigate the forming mechanism and evolutionary pattern of the stagnant region during mechanical scratching with a diamond wedge tool. The study is structured as follows: Firstly, a theoretical calculation model for the geometric parameters of the stagnant region on the formed groove surface is established based on the contact friction partition mechanism and slip-line field theory. The model indicates that the geometric parameters lB-sg, lV-sg, and ∆lsg of the stagnant region are determined by the length of the stagnant region lp-sg in the plastic flow plane and the transformation parameters. Secondly, the formation process of the stagnant region in mechanical scratching is investigated using an orthogonal cutting simulation model with a negative rake angle tool. The results reveal that the stagnant region is a plastic deformation region formed due to the geometrical characteristics of the negative front surface of the scratching tool and its excessive extrusion, which leads to the formation of adhesive friction within the material. Thirdly, the characteristics of the stagnant region are determined through scratching experiments. Compared to the material in the plastic flow region, the material within the stagnant region exhibits finer and denser microstructures, reduced surface hardening peaks and hardened layer depths, and significantly improved surface roughness. Finally, the evolutionary pattern of the stagnant region under the influence of scratching processing parameters is examined based on the theoretical calculation model of the geometric parameters and the scratching experiment. The findings indicate that as the wedge angle of the scratching tool decreases, the relief angle increases, the absolute value of the rotation angle around the Y-axis decreases, the scratching speed decreases, and the material's plastic adherence improves, the PI/k value decreases, the lp-sg value increases, and consequently, the geometric parameters lB-sg, lV-sg, and ∆lsg of the stagnant region on the formed groove surface also increase. The deviation analysis of the geometric parameters of the stagnant region reveals a consistent trend between the theoretical and experimental values of lV-sg and ∆lsg, with maximum deviations of 15 µm and 4.13%, respectively. This study provides theoretical and experimental evidence for the establishment of the theoretical model of the stagnant region in mechanical scratching, the analysis of its forming mechanism, and the control of the stagnant region geometric parameters on the formed groove surface.

7.
J Cosmet Dermatol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923679

ABSTRACT

BACKGROUND: The microneedle fractional radiofrequency system (MFRS) is able to rejuvenate facial appearance by heating and coagulating certain depth of skin tissue. OBJECTIVE: To evaluate the safety and efficacy of a novel vacuum-assisted MFRS for facial contour tightening. METHODS: This prospective, randomized, split-face study included 21 patients who underwent three treatments with a vacuum-assisted MFRS at 1-month intervals. Half of the face was treated with the MFRS; the other half was untreated (control). Facial volume changes and wrinkles were objectively measured using a three-dimensional imaging system and VISIA-CR. RESULTS: Volume changes of the treated midface were -0.24 ± 0.75, -0.59 ± 0.92, and -0.55 ± 0.65 mL at 1, 3, 6 months follow-up; however, measurements of the control side were 0.08 ± 0.70, -0.08 ± 0.53, and - 0.10 ± 0.86 mL, indicating significant reductions (p < 0.05). The number of facial wrinkles on the treated side was significantly reduced to 12.44 ± 4.85 at 3 months and sustained at 6 months (11.11 ± 4.100) compared to the control side (14.89 ± 5.26 and 13.22 ± 4.44, respectively; p < 0.05). No long-term side effects occurred. CONCLUSION: The vacuum-assisted MFRS is safe and effective and is recommended for improving facial tightening and reducing wrinkles. This technology is sufficient to ensure the insertion depth, thus helping to improve the treatment accuracy and safety. The MFRS provides sustained effects for at least 6 months.

8.
Adv Sci (Weinh) ; 11(20): e2308248, 2024 May.
Article in English | MEDLINE | ID: mdl-38491904

ABSTRACT

Increasing immunotherapy response rate and durability can lead to significant improvements in cancer care. To address this challenge, a novel multivalent immune checkpoint therapeutic platform is constructed through site-specific ligation of anti-PD-L1 nanobody (Nb) on ferritin (Ftn) nanocage. Nb-Ftn blocks PD-1/PD-L1 interaction and downregulates PD-L1 levels via endocytosis-induced degradation. In addition, the cage structure of Ftn allows encapsulation of indocyanine green (ICG), an FDA-approved dye. Photothermal treatment with Nb-Ftn@ICG induces immunogenic death of tumor cells, which improves systemic immune response via maturation of dendritic cells and enhanced infiltration of T cells. Moreover, Nb-Ftn encapsulation significantly enhances cellular uptake, tumor accumulation and retention of ICG. In vivo assays showed that this nanoplatform ablates the primary tumor, suppresses abscopal tumors and inhibits tumor metastasis, leading to a prolonged survival rate. This work presents a novel strategy for improving cancer immunotherapy using multivalent nanobody-ferritin conjugates as immunological targeting and enhancing carriers.


Subject(s)
B7-H1 Antigen , Ferritins , Immunotherapy , Neoplasms , Single-Domain Antibodies , Animals , Humans , Mice , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Ferritins/immunology , Immunotherapy/methods , Indocyanine Green , Neoplasms/therapy , Neoplasms/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology
9.
Dermatol Ther (Heidelb) ; 14(1): 233-249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100073

ABSTRACT

BACKGROUND: The excellent efficacy is mitigated by the limited safety profile of microfocused ultrasound procedures. OBJECTIVE: We sought to assess the safety and tightening efficacy of a novel microfocused ultrasound. METHODS: The randomized middle and lower face and submental region of the participants were treated with the novel device using the following transducers: M4.5, D4.5, M3.0, and D3.0. Improvement in paired comparison of pretreatment and posttreatment photographs, three-dimensional (3D) volumetric assessments, skin thickness measured by B-ultrasonography, and skin photoaging parameters were evaluated. Adverse events and patient satisfaction were also recorded. RESULTS: A total of 20 participants (20 female) were enrolled. Fourteen of 20 participants (70%) were judged to show clinically significant facial tightening during 3-month follow-up (P < 0.05). The mean volumetric change in the lower face, as quantitatively assessed after 3 months was -0.29 mL compared with +0.42 mL on the control side (P < 0.05). The VAS pain score was 3.00 ± 1.19 without any oral or intramuscular anesthesia. CONCLUSIONS: A small sample size, lack of clinical scales, and impersonalized treatment parameters. The novel microfocused ultrasound appears to be a safe and effective modality for lower-face tightening. CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR 2200064666.

10.
bioRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798668

ABSTRACT

We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.

11.
bioRxiv ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38585736

ABSTRACT

CRISPR/Cas9 methods are a powerful in vivo approach to edit the genome of Drosophila melanogaster. To convert existing Drosophila GAL4 lines to LexA driver lines in a secondary school classroom setting, we applied the CRISPR-based genetic approach to a collection of Gal4 'driver' lines. The integration of the yellow+ coat color marker into homology-assisted CRISPR knock-in (HACK) enabled visual selection of Gal4-to-LexA conversions using brightfield stereo-microscopy available in a broader set of standard classrooms. Here, we report the successful conversion of eleven Gal4 lines with expression in neuropeptide-expressing cells into corresponding, novel LexA drivers. The conversion was confirmed by LexA- and Gal4-specific GFP reporter gene expression. This curriculum was successfully implemented in a summer course running 16 hours/week for seven weeks. The modularity, flexibility, and compactness of this course should enable development of similar classes in secondary schools and undergraduate curricula, to provide opportunities for experience-based science instruction, and university-secondary school collaborations that simultaneously fulfill research needs in the community of science.

SELECTION OF CITATIONS
SEARCH DETAIL