Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Theor Appl Genet ; 137(7): 159, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872054

ABSTRACT

KEY MESSAGE: Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.


Subject(s)
Amylose , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Amylose/metabolism , Amylose/genetics , Genome-Wide Association Study , Phenotype , Genetic Linkage , Genes, Plant , Genotype , Genetic Association Studies
2.
Theor Appl Genet ; 137(5): 112, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662228

ABSTRACT

KEY MESSAGE: Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.


Subject(s)
Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Chromosome Mapping/methods , Genes, Plant , Genome-Wide Association Study , Genetic Association Studies , Linkage Disequilibrium , Genotype
3.
Theor Appl Genet ; 136(5): 122, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142873

ABSTRACT

KEY MESSAGE: A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.


Subject(s)
Plant Roots , Soil Pollutants , Humans , Plant Roots/metabolism , Zea mays/physiology , Antioxidants/metabolism , Lead/toxicity , Lead/metabolism , Saccharomyces cerevisiae , Soil Pollutants/metabolism
4.
Theor Appl Genet ; 136(4): 93, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010631

ABSTRACT

KEY MESSAGE: Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plant Breeding , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide
5.
Phytopathology ; 113(7): 1317-1324, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36721376

ABSTRACT

Gibberella ear rot (GER) in maize caused by Fusarium graminearum is one of the most devastating maize diseases reducing grain yield and quality worldwide. The genetic bases of maize GER resistance remain largely unknown. Using artificial inoculation across multiple environments, the GER severity of an association panel consisting of 316 diverse inbred lines was observed with wide phenotypic variation. In the association panel, a genome-wide association study using a general linear model identified 69 single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance at the threshold of 2.04 × 10-5, and the average phenotypic variation explained (PVE) of these SNPs was 5.09%. We also conducted a genome-wide association study analysis using a mixed linear model at a threshold of 1.0 × 10-4, and 16 significantly associated SNPs with an average PVE of 4.73% were detected. A combined general linear model and mixed linear model method obtained 10 co-localized significantly associated SNPs linked to GER resistance, including the most significant SNP (PZE-105079915) with the greatest PVE value, 9.07%, at bin 5.05 following 10 candidate genes. These findings are significant for the exploration of the complicated genetic variations in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the elite germplasm resources that can be used for breeding GER resistance in maize.


Subject(s)
Fusarium , Gibberella , Gibberella/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Plant Breeding , Fusarium/genetics , Genetic Loci , Polymorphism, Single Nucleotide/genetics , Zea mays/genetics , Disease Resistance/genetics
6.
Plant Dis ; 107(4): 1115-1121, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36131495

ABSTRACT

Gibberella ear rot (GER) caused by Fusarium graminearum (teleomorph Gibberella zeae) is one of the most devastating maize diseases that reduces grain yield and quality worldwide. Utilization of host genetic resistance has become one of the most suitable strategies to control GER. In this study, a set of 246 diverse inbred lines derived from the intermated B 73 × Mo 17 doubled haploid population (IBM Syn10 DH) were used to detect quantitative trait loci (QTL) associated with resistance to GER. Meanwhile, a GradedPool-Seq (GPS) approach was performed to identify genomic variations involved in GER resistance. Using artificial inoculation across multiple environments, GER severity of the population was observed with wide phenotypic variation. Based on the linkage mapping, a total of 14 resistant QTLs were detected, accounting for 5.11 to 14.87% of the phenotypic variation, respectively. In GPS analysis, five significant single nucleotide polymorphisms (SNPs) associated with GER resistance were identified. Combining QTL mapping and GPS analysis, a peak-value SNP on chromosome 4 from GPS was overlapped with the QTL qGER4.2, suggesting that the colocalized region could be the most possible target location conferring resistance to GER. Subsequently, seven candidate genes were identified within the peak SNP, linking them to GER resistance. These findings are useful for exploring the complicated genetic variations in maize GER resistance. The genomic regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the combined strategy that can be used for quantitative traits in plant species.


Subject(s)
Gibberella , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Gibberella/genetics , Zea mays/genetics , Chromosome Mapping
7.
Plant J ; 108(1): 40-54, 2021 10.
Article in English | MEDLINE | ID: mdl-34252236

ABSTRACT

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Subject(s)
Genome, Plant/genetics , Zea mays/genetics , Crops, Agricultural , Endosperm/genetics , Endosperm/metabolism , Inbreeding , Mutation , Phenotype , Plant Breeding , Seed Bank , Seeds/genetics , Seeds/metabolism , Starch/metabolism , Zea mays/metabolism
8.
Physiol Plant ; 174(1): e13606, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837237

ABSTRACT

Soil salinization is an important factor threatening the yield and quality of maize. Ca2+ plays a considerable role in regulating plant growth under salt stress. Herein, we examined the shoot Ca2+ concentrations, root Ca2+ concentrations, and transport coefficients of seedlings in an association panel composed of 305 maize inbred lines under normal and salt conditions. A genome-wide association study was conducted by using the investigated phenotypes and 46,408 single-nucleotide polymorphisms of the panel. As a result, 53 significant SNPs were specifically detected under salt treatment, and 544 genes were identified in the linkage disequilibrium regions of these SNPs. According to the expression data of the 544 genes, we carried out a weighted coexpression network analysis. Combining the enrichment analyses and functional annotations, four hub genes (GRMZM2G051032, GRMZM2G004314, GRMZM2G421669, and GRMZM2G123314) were finally determined, which were then used to evaluate the genetic variation effects by gene-based association analysis. Only GRMZM2G123314, which encodes a pentatricopeptide repeat protein, was significantly associated with Ca2+ transport and the haplotype G-CT was identified as the superior haplotype. Our study brings novel insights into the genetic and molecular mechanisms of salt stress response and contributes to the development of salt-tolerant varieties in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Calcium , Phenotype , Polymorphism, Single Nucleotide/genetics , Salt Stress , Seedlings/genetics , Zea mays/physiology
9.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077153

ABSTRACT

Salinization seriously threatens the normal growth of maize, especially at the seedling stage. Recent studies have demonstrated that circular RNAs (circRNAs) play vital roles in the regulation of plant stress resistance. Here, we performed a genome-wide association study (GWAS) on the survival rate of 300 maize accessions under a salt stress treatment. A total of 5 trait-associated SNPs and 86 candidate genes were obtained by the GWAS. We performed RNA sequencing for 28 transcriptome libraries derived from 2 maize lines with contrasting salt tolerance under normal and salt treatment conditions. A total of 1217 highly expressed circRNAs were identified, of which 371 were responsive to a salt treatment. Using PCR and Sanger sequencing, we verified the reliability of these differentially expressed circRNAs. An integration of the GWAS and RNA-Seq analyses uncovered two differentially expressed hub genes (Zm00001eb013650 and Zm00001eb198930), which were regulated by four circRNAs. Based on these results, we constructed a regulation model of circRNA/miRNA/mRNA that mediated salt stress tolerance in maize. By conducting hub gene-based association analyses, we detected a favorable haplotype in Zm00001eb198930, which was responsible for high salt tolerance. These results help to clarify the regulatory relationship between circRNAs and their target genes as well as to develop salt-tolerant lines for maize breeding.


Subject(s)
RNA, Circular , Zea mays , Gene Expression Profiling , Genome-Wide Association Study , Plant Breeding , RNA, Circular/genetics , Reproducibility of Results , Salt Tolerance/genetics , Transcriptome , Zea mays/genetics
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499409

ABSTRACT

Ear shank length (ESL) has significant effects on grain yield and kernel dehydration rate in maize. Herein, linkage mapping and genome-wide association study were combined to reveal the genetic architecture of maize ESL. Sixteen quantitative trait loci (QTL) were identified in the segregation population, among which five were repeatedly detected across multiple environments. Meanwhile, 23 single nucleotide polymorphisms were associated with the ESL in the association panel, of which four were located in the QTL identified by linkage mapping and were designated as the population-common loci. A total of 42 genes residing in the linkage disequilibrium regions of these common variants and 12 of them were responsive to ear shank elongation. Of the 12 genes, five encode leucine-rich repeat receptor-like protein kinases, proline-rich proteins, and cyclin11, respectively, which were previously shown to regulate cell division, expansion, and elongation. Gene-based association analyses revealed that the variant located in Cyclin11 promoter affected the ESL among different lines. Cyclin11 showed the highest expression in the ear shank 15 days after silking among diverse tissues of maize, suggesting its role in modulating ESL. Our study contributes to the understanding of the genetic mechanism underlying maize ESL and genetic modification of maize dehydration rate and kernel yield.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Phenotype , Chromosome Mapping , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Genetic Linkage
11.
Int J Mol Sci ; 23(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35955919

ABSTRACT

The ability of immature embryos to induce embryogenic callus (EC) is crucial for genetic transformation in maize, which is highly genotype-dependent. To dissect the genetic basis of maize EC induction, we conducted QTL mapping for four EC induction-related traits, the rate of embryogenic callus induction (REC), rate of shoot formation (RSF), length of shoot (LS), and diameter of callus (DC) under three environments by using an IBM Syn10 DH population derived from a cross of B73 and Mo17. These EC induction traits showed high broad-sense heritability (>80%), and significantly negative correlations were observed between REC and each of the other traits across multiple environments. A total of 41 QTLs for EC induction were identified, among which 13, 12, 10, and 6 QTLs were responsible for DC, RSF, LS, and REC, respectively. Among them, three major QTLs accounted for >10% of the phenotypic variation, including qLS1-1 (11.54%), qLS1-3 (10.68%), and qREC4-1 (11.45%). Based on the expression data of the 215 candidate genes located in these QTL intervals, we performed a weighted gene co-expression network analysis (WGCNA). A combined use of KEGG pathway enrichment and eigengene-based connectivity (KME) values identified the EC induction-associated module and four hub genes (Zm00001d028477, Zm00001d047896, Zm00001d034388, and Zm00001d022542). Gene-based association analyses validated that the variations in Zm00001d028477 and Zm00001d034388, which were involved in tryptophan biosynthesis and metabolism, respectively, significantly affected EC induction ability among different inbred lines. Our study brings novel insights into the genetic and molecular mechanisms of EC induction and helps to promote marker-assisted selection of high-REC varieties in maize.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping , Genes, Plant , Phenotype , Zea mays/genetics , Zea mays/metabolism
12.
Mol Genet Genomics ; 296(5): 1057-1070, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34117523

ABSTRACT

The heavy metals lead and cadmium have become important pollutants in the environment, which exert negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 65.8-97.3% and 32.0-98.8% under control (CK) and treatment (T) conditions, respectively. A total of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were identified using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two major QTL that explained > 10% of phenotypic variation were identified under T condition and using LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport and tolerance. These findings will contribute to functional gene identification and molecular marker-assisted breeding for improving heavy metal tolerance in maize.


Subject(s)
Cadmium/toxicity , Lead/toxicity , Quantitative Trait Loci , Seedlings/genetics , Zea mays/drug effects , Zea mays/genetics , Chromosome Mapping , Environmental Pollutants/toxicity , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Phenotype , Seedlings/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics
13.
Theor Appl Genet ; 134(10): 3305-3318, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218289

ABSTRACT

KEYMESSAGE: Two hub genes GRMZM2G075104 and GRMZM2G333183 involved in salt tolerance were identified by GWAS and WGCNA. Furthermore, they were verified to affect salt tolerance by candidate gene association analysis. Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.


Subject(s)
Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Salt Tolerance , Seedlings/physiology , Stress, Physiological , Zea mays/physiology , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Seedlings/genetics , Transcriptome , Zea mays/genetics
14.
Mol Breed ; 41(2): 9, 2021 Feb.
Article in English | MEDLINE | ID: mdl-37309474

ABSTRACT

Leaf color mutant is an important resource for studying chlorophyll biosynthesis and chloroplast development in maize. Here, a novel mutant zebra crossband 9 (zb9) with transverse green-/yellow-striped leaves appeared from ten-leaf stage until senescence was identified from mutant population derived from the maize inbred line RP125. The yellow section of the zb9 mutant displays a reduction of chlorophyll and carotenoid contents, as well as impaired chloroplast structure. Genetic analysis showed that the zb9 mutant phenotype was caused by a single recessive gene. Map-based cloning demonstrated that the zb9 locus was delimited into a 648 kb region on chromosome 1 covering thirteen open reading frames (ORFs). Among them, a point mutation (G to A) in exon 2 of the gene Zm00001d029151, named Zmzb9, was identified based on sequencing analysis. The causal gene Zmzb9 encodes UDP-glucose-4-epimerase 4 (UGE4), a key enzyme involved in chloroplast development and was considered as the only candidate gene controlling the mutant phenotype. Expression patterns indicated that the causal gene was abundantly expressed in the leaves and sheaths, as well as significantly downregulated in the mutant compared to that in the wild type. Subcellular localization showed that ZmZB9 was localized in chloroplasts and implied the putative gene involved in chloroplast development. Taken together, we propose that the causal gene Zmzb9 tightly associated with the zebra leaf phenotype, and the obtained gene here will help to uncover the regulatory mechanism of pigment biosynthesis and chloroplast development in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01202-7.

15.
Mol Genet Genomics ; 295(2): 409-420, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31807910

ABSTRACT

Kernel weight in a unit volume is referred to as kernel test weight (KTW) that directly reflects maize (Zea mays L.) grain quality. In this study, an inter-mated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population and an association panel were used to identify loci responsible for KTW of maize across multiple environments. A total of 18 significant KTW-related single-nucleotide polymorphisms (SNPs) were identified using genome-wide association study (GWAS); they were closely linked to 12 candidate genes. In the IBM Syn10 DH population, linkage analysis detected 19 common quantitative trait loci (QTL), five of which were repeatedly detected among multiple environments. Several verified genes that regulate maize seed development were found in the confidence intervals of the mapped QTL and the LD regions of GWAS, such as ZmYUC1, BAP2, ZmTCRR-1, dek36 and ZmSWEET4c. Combined QTL mapping and GWAS identified one significant SNP that was co-identified in the both populations. Based on the co-localized SNP across the both populations, 17 candidate genes were identified. Of them, Zm00001d044075, Zm00001d044086, and Zm00001d044081 were further identified by candidate gene association study for KTW. Zm00001d044081 encodes homeobox-leucine zipper protein ATHB-4, which has been demonstrated to control apical embryo development in Arabidopsis. Our findings provided insights into the mechanism underlying maize KTW and contributed to the application of molecular-assisted selection of high KTW breeding in maize.


Subject(s)
Genome-Wide Association Study , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Arabidopsis/genetics , Breeding , Chromosome Mapping , Edible Grain/genetics , Genetic Association Studies , Genetic Linkage , Genome, Plant/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Seeds/genetics , Seeds/growth & development , Zea mays/growth & development
16.
Mol Genet Genomics ; 293(3): 615-622, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29274071

ABSTRACT

Large phenotypic variations in the lead (Pb) concentration were observed in grains and leaves of maize plants. A further understanding of inheritance of Pb accumulation may facilitate improvement of low-Pb-accumulating cultivars in maize. A genome-wide association study was conducted in a population of 269 maize accessions with 43,737 single-nucleotide polymorphisms (SNPs). The Pb concentrations in leaves and kernels of 269 accessions were collected in pot-culture and field experiments in years of 2015 and 2016. Significant differences in Pb accumulation were found among individuals under different environments. Using the structure and kinship model, a total of 21 SNPs significantly associated with the Pb accumulation were identified with P < 2.28 × 10-5 and FDR < 0.05 in the pot-culture and field experiments across 2 years. Three SNPs on chromosome 4 had significant associations simultaneously with the Pb concentrations of kernels and leaves and were co-localized with the previously detected quantitative trait loci. Through ridge regression best linear unbiased prediction Pb accumulation in the association population, the prediction accuracies by cross validation were 0.18-0.59 and 0.17-0.64, depending on the k-fold and the size of the training population. The results are helpful for genetic improvement and genomic prediction of Pb accumulation in maize.


Subject(s)
Genome-Wide Association Study/methods , Lead/metabolism , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Regulatory Networks , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/metabolism
17.
Mol Biol Rep ; 41(4): 2471-83, 2014.
Article in English | MEDLINE | ID: mdl-24420865

ABSTRACT

Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or <-2 (P < 0.001) were further analyzed, representing 1,476 up-regulated and 1,754 down-regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Next, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and it is showed the results were general agreement with the Solexa analysis, although the degree of change was lower in amplitude. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism.


Subject(s)
Basidiomycota/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Zea mays/genetics , Zea mays/microbiology , Computational Biology , Gene Library , Metabolic Networks and Pathways , Molecular Sequence Annotation , Reproducibility of Results , Signal Transduction , Zea mays/metabolism
18.
Biochem Biophys Res Commun ; 441(2): 425-30, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24183719

ABSTRACT

Genetic transformation of maize is highly dependent on the development of embryonic calli from the dedifferentiated immature embryo. To better understand the regulatory mechanism of immature embryo dedifferentiation, we generated four small RNA and degradome libraries from samples representing the major stages of dedifferentiation. More than 186 million raw reads of small RNA and degradome sequence data were generated. We detected 102 known miRNAs belonging to 23 miRNA families. In total, we identified 51, 70 and 63 differentially expressed miRNAs (DEMs) in the stage I, II, III samples, respectively, compared to the control. However, only 6 miRNAs were continually up-regulated by more than fivefold throughout the process of dedifferentiation. A total of 87 genes were identified as the targets of 21 DEM families. This group of targets was enriched in members of four significant pathways including plant hormone signal transduction, antigen processing and presentation, ECM-receptor interaction, and alpha-linolenic acid metabolism. The hormone signal transduction pathway appeared to be particularly significant, involving 21 of the targets. While the targets of the most significant DEMs have been proved to play essential roles in cell dedifferentiation. Our results provide important information regarding the regulatory networks that control immature embryo dedifferentiation in maize.


Subject(s)
Cell Dedifferentiation/genetics , Gene Expression Regulation, Plant , MicroRNAs/metabolism , RNA Stability , RNA, Plant/metabolism , Seeds/growth & development , Zea mays/embryology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Helix-Loop-Helix Motifs , MicroRNAs/chemistry , MicroRNAs/genetics , RNA, Plant/chemistry , RNA, Plant/genetics , Seeds/genetics , Seeds/metabolism , Sequence Analysis, RNA , Zea mays/genetics , Zea mays/metabolism
19.
Physiol Plant ; 147(3): 270-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22747913

ABSTRACT

Lead (Pb) has become one of the most abundant heavy metal pollutants of the environment. With its large biomass, maize could be an important object for studying the phytoremediation of Pb-contaminated soil. In our previous research, we screened 19 inbred lines of maize for Pb concentration, and line 178 was identified to be a hyperaccumulator for Pb in both the roots and aboveground parts. To identify important genes and metabolic pathways related to Pb accumulation and tolerance, line 178 was underwent genome expression profile under Pb stress and a control (CK). A total of approximately 11 million cDNA tags were sequenced and 4 665 539 and 4 936 038 clean tags were obtained from the libraries of the test and CK, respectively. In comparison to CK, 2379 and 1832 genes were identified up- or downregulated, respectively, more than fivefolds under Pb stress. Interestingly, all the genes were related to cellular processes and signaling, information storage and processing or metabolism functions. Particularly, the genes involved in posttranslational modification, protein turnover and chaperones; signal transduction, carbohydrate transport and metabolism; and lipid transport and metabolism significantly changed under the treatment. In addition, seven pathways including ribosome, photosynthesis, and carbon fixation were affected significantly, with 118, 12, 34, 21, 18, 72 and 43 differentially expressed genes involved. The significant upregulation of the ribosome pathway may reveal an important secret for Pb tolerance of line 178. And the sharp increase of laccase transcripts and metal ion transporters were suggested to account in part for Pb hyperaccumulation in the line.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant/genetics , Lead/pharmacology , Transcriptome , Zea mays/genetics , Biodegradation, Environmental , Biomass , Carbon Cycle , Chromosome Mapping , DNA, Complementary/chemistry , DNA, Complementary/genetics , Down-Regulation , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Lead/metabolism , Molecular Sequence Annotation , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology , RNA, Messenger/genetics , RNA, Plant/genetics , Sequence Analysis, DNA , Soil Pollutants/pharmacology , Stress, Physiological , Up-Regulation , Zea mays/drug effects , Zea mays/metabolism , Zea mays/physiology
20.
Plant Physiol Biochem ; 201: 107874, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37429215

ABSTRACT

Seed germination directly affect maize yield and grain quality. Low-temperature reduces maize yield by affecting seed germination and seedling growth. However, the molecular mechanism of maize seed germination under low-temperature remains unclear. In this study, the transcriptome data of two maize inbred lines SCL127 (chilling-sensitive) and SCL326 (chilling-tolerant) were analyzed at five time points (0 H, 4 H, 12 H, 24 H, and 48 H) under low-temperature conditions. Through the comparison of SCL127-0 H-vs-SCL326-0 H (Group I), SCL127-4 H-vs-SCL326-4 H (Group Ⅱ), SCL127-12 H-vs-SCL326-12 H (Group Ⅲ), SCL127-24 H-vs-SCL326-24 H (Group Ⅳ), and SCL127-48 H-vs SCL326-48 H (Group Ⅴ), a total of 8,526 differentially expressed genes (DEGs) were obtained. Weighted correlation network analysis revealed that Zm00001d010445 was the hub gene involved in seed germination under low-temperature conditions. Zm00001d010445-based association analysis showed that Hap Ⅱ (G) was the excellent haplotype for seed germination under low-temperature conditions. These findings provide a new perspective for the study of the genetic architecture of maize tolerance to low-temperature and contribute to the cultivation of maize varieties with low-temperature tolerance.


Subject(s)
Germination , Zea mays , Germination/genetics , Zea mays/genetics , Temperature , Seeds/genetics , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL