Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
BMC Microbiol ; 24(1): 204, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851673

ABSTRACT

BACKGROUND: The Gastrodia elata Bl. is an orchid, and its growth demands the presence of Armillaria species. The strong competitiveness of Armillaria species has always been a concern of major threat to other soil organisms, thus disrupting the equilibrium of soil biodiversity. Introducing other species to where G. elata was cultivated, could possibly alleviate the problems associated with the disequilibrium of soil microenvironment; however, their impacts on the soil microbial communities and the underlying mechanisms remain unclear. To reveal the changes of microbial groups associated with soil chemical properties responding to different cultivation species, the chemical property measurements coupled with the next-generation pyrosequencing analyses were applied with soil samples collected from fallow land, cultivation of G. elata and Phallus impudicus, respectively. RESULTS: The cultivation of G. elata induced significant increases (p < 0.05) in soil pH and NO3-N content compared with fallow land, whereas subsequent cultivation of P. impudicus reversed these G. elata-induced increases and was also found to significantly increase (p < 0.05) the content of soil NH4+-N and AP. The alpha diversities of soil microbial communities were significantly increased (p < 0.01) by cultivation of G. elata and P. impudicus as indicated with Chao1 estimator and Shannon index. The structure and composition of soil microbial communities differed responding to different cultivation species. In particular, the relative abundances of Bacillus, norank_o_Gaiellales, Mortierella and unclassified_k_Fungi were significantly increased (p < 0.05), while the abundances of potentially beneficial genera such as Acidibacter, Acidothermus, Cryptococcus, and Penicillium etc., were significantly decreased (p < 0.05) by cultivation of G. elata. It's interesting to find that cultivation of P. impudicus increased the abundances of these genera that G. elata decreased before, which contributed to the difference of composition and structure. The results of CCA and heatmap indicated that the changes of soil microbial communities had strong correlations with soil nutrients. Specifically, among 28 genera presented, 50% and 42.9% demonstrated significant correlations with soil pH and NO3-N in response to cultivation of G. elata and P. impudicus. CONCLUSIONS: Our findings suggested that the cultivation of P. impudicus might have potential benefits as result of affecting soil microorganisms coupled with changes in soil nutrient profile.


Subject(s)
Bacteria , Biodiversity , Gastrodia , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Gastrodia/microbiology , Gastrodia/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbiota/genetics , Hydrogen-Ion Concentration , Nitrogen/analysis , Nitrogen/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Armillaria/genetics , RNA, Ribosomal, 16S/genetics
2.
Plant Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319631

ABSTRACT

Epimedium sagittatum is a collective term for herbaceous plants belonging to the family Berberidaceae. Their dried leaves and stems have significant therapeutic effects on tumor inhibition, hypertension control, and coronary heart disease (Ke et al. 2023; Zhao et al. 2019). In 2021 and 2022, plants with similar leaf rot symptoms ranging from 30% to 55% was observed on E. sagittatum in Congjiang County, Guizhou province. The initial symptoms of the disease manifest locally on the leaf, with yellowing on the surface edge of the affected tissue, browning in the middle part, and brown-white discoloration in the innermost part (Supplementary Figure S1B). As the disease progresses, the entire infected leaf gradually softens, while the veins remain intact (Supplementary Figure S1C). Ultimately, the leaf withers and dehisces. The nine samples with typical symptoms were collected from Congjiang County, Guizhou province (26.598°N, 106.707°E). Twenty-seven fungi were isolated, including ten isolates of Rhizopus and seventeen isolates of seven other genera. On isolate YYH-CJ-17 many sporangia were formed and turned to a brown-gray to black color on potato dextrose agar medium (PDA) after culturing 5 days under dark at 25 ℃ (Supplementary Figure S2A and S2B). The branches of mycelium were finger-shaped or root-shaped. The sporangium was spherical or nearly spherical, 60-250 µm in diameter, and sporangiospores were elliptical or spherical and 4-8 µm in diameter. The obtained 547 bp ITS fragment (accession OR225970) and 1231 bp EF-1α region (accession OR242258) from isolate YYH-CJ-17 were compared with NR database using the BLAST tool provided by NCBI, which revealed more than 99.5% identity (query cover more than 98%) with the sequences of ITS (accessions MF522822.1) and EF-1α (accession AB281541.1) of Rhizopus oryzae Went & H.C. Prinsen Geerlings (Gao et al. 2022; Zhang et al. 2022). The phylogenetic tree constructed with the ITS and EF-1α gene sequences demonstrates that strain YYH-CJ-17 clusters with R. oryzae in the same branch and the bootstrap value was greater than 99% (Supplementary Figure S3). Based on the morphological characteristics and ITS and EF-1a sequences, the isolate YYH-CJ-17 is identified as R. oryzae. Pathogenicity tests were performed on detached healthy leaves and living plants of E. sagittatum. Healthy leaves of E. sagittatum were subjected to inoculation with isolate YYH-CJ-17 with 5 × 105 CFU mL-1 concentration in sterile culture dishes. The progression of the disease was marked by the gradual softening of the infected leaves and the expansion of the lesions, which ultimately produced black-brown sporangium (Supplementary Figure S4A). Furthermore, the E. sagittatum living plants were sprayed with 5 × 105 CFU mL-1 conidial suspension of isolate YYH-CJ-17, with ddH2O as a negative control, and then were cultivated at 25℃ and 90% humidity for 21 days in the greenhouse. This assay found that the E. sagittatum leaves treated with isolate YYH-CJ-17 exhibited the same symptoms observed on plants in fields (Supplementary Figure S4B). The fungus re-isolated from the inoculated leaves were identified as R. oryzae by ITS sequencing and were blasted with NR database, which highest matched with the sequence of ITS (accessions MF522822.1) mentioned above, thus fulfilling Koch's postulates. R. oryzae has been identified as a causative agent of a diverse array of host diseases, including leaf mildew of tobacco, fruit rot of yellow oleander and pears, and soft rot of bananas (Farooq et al. 2017; Khokhar et al. 2019; Kwon et al. 2012; Pan et al. 2021). To the best of our knowledge, this is the first report of leaf rot on E. sagittatum caused by R. oryzae in China, which will provide clear prevention and management target for the leaf rot disease of E. sagittatum.

3.
Curr Microbiol ; 80(9): 298, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490157

ABSTRACT

The foliar disease, which is the primary complex disease of Pseudostellaria heterophylla, can be caused by multiple co-infecting pathogens, resulting in a significant reduction in yield. However, there is a lack of research on the relationship between co-infection of various pathogens and the response of resistance-related genes in P. heterophylla. Through the use of 18S rDNA sequencing and pathogenicity testing, it has been determined that Fusarium oxysporum, Alternaria alternata, Arcopilus aureus, Botrytis cinerea, Nemania diffusa, Whalleya microplaca, and Cladosporium cladosporioides are co-infecting pathogens responsible for foliar diseases in P. heterophylla. Furthermore, the qRT-PCR analysis revealed that F. oxysporum, A. alternata, B. cinerea, A. aureus, N. diffusa, Schizophyllum commune, C. cladosporioides, and Coprinellus xanthothrix upregulated ten, two, three, four, seven, thirteen, five, one, and six resistance-related genes, respectively. These findings suggest that a total of 22 resistance-related genes were implicated in the response to diverse fungi, and the magnitude and frequency of induction of resistance-related genes varied considerably among the different fungi. The aforementioned gene associated with resistance was found to be implicated in the response to multiple fungi, including PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3, which were found to be involved in the resistance response to nine, five, four, and four fungi, respectively. The findings indicate that the PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3 genes exhibit a broad-spectrum resistance to various fungi. Furthermore, the avirulence fungi C. xanthothrix, which is known to affect P. heterophylla, was found to prime a wide range of resistance responses in P. heterophylla, thereby enhancing its disease resistance. This study provided insight into the management strategies for foliar diseases of P. heterophylla and new genetic materials for disease-resistant breeding.


Subject(s)
Coinfection , Humans , DNA, Ribosomal , Disease Resistance
4.
Ecotoxicol Environ Saf ; 258: 114991, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37172405

ABSTRACT

BACKGROUND: Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear. METHODS: Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice. RESULTS: Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1ß) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU+, BrdU-DCX+, and BrdU-NeuN+ cells in the hippocampal dentate gyrus, as well as the percentages of BrdU+ cells that were NeuN+ in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX+ cells correlated negatively with the percentage of ameboid microglia, TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro. CONCLUSION: Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.


Subject(s)
Depressive Disorder, Major , Microglia , Mice , Animals , Aflatoxin B1/toxicity , Pyroptosis , Bromodeoxyuridine , Hippocampus , Sucrose
5.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1851-1857, 2023 Apr.
Article in Zh | MEDLINE | ID: mdl-37282960

ABSTRACT

This paper aimed to study the role of asparagine endopeptidase(AEP) gene in the biosynthesis mechanism of cyclic peptide compounds in Pseudostellaria heterophylla. The transcriptome database of P. heterophylla was systematically mined and screened, and an AEP gene, tentatively named PhAEP, was successfully cloned. The heterologous function verification by Nicotiana benthamiana showed that the expression of the gene played a role in the biosynthesis of heterophyllin A in P. heterophylla. Bioinformatics analysis showed that the cDNA of PhAEP was 1 488 bp in length, encoding 495 amino acids with a molecular weight of 54.72 kDa. The phylogenetic tree showed that the amino acid sequence encoded by PhAEP was highly similar to that of Butelase-1 in Clitoria ternatea, reaching 80%. The sequence homology and cyclase active site analysis revealed that the PhAEP enzyme may specifically hydrolyse the C-terminal Asn/Asp(Asx) site of the core peptide in the HA linear precursor peptide of P. heterophylla, thereby participating in the ring formation of the linear precursor peptide. The results of real-time quantitative polymerase chain reaction(RT-qPCR) showed that the expression level of PhAEP was the highest in fruits, followed by in roots, and the lowest in leaves. The heterophyllin A of P. heterophylla was detected in N. benthamiana that co-expressed PrePhHA and PhAEP genes instantaneously. In this study, the PhAEP gene, a key enzyme in the biosynthesis of heterophyllin A in P. heterophylla, has been successfully cloned, which lays a foundation for further analysis of the molecular mechanism of PhAEP enzyme in the biosynthesis of heterophyllin A in P. heterophylla and has important significance for the study of synthetic biology of cyclic peptide compounds in P. heterophylla.


Subject(s)
Caryophyllaceae , Genes, vif , Phylogeny , Plant Leaves/genetics , Peptides, Cyclic , Cloning, Molecular , Caryophyllaceae/genetics
6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1491-1497, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-37005836

ABSTRACT

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 µg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Subject(s)
Coix , Mycotoxins , Humans , Mycotoxins/analysis , Aflatoxin B1/analysis , Chromatography, Liquid/methods , Food Contamination/analysis , Tandem Mass Spectrometry/methods
7.
Mol Plant Microbe Interact ; 35(12): 1124-1126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36508486

ABSTRACT

Acinetobacter schindleri is an endophyte of Pseudostellaria heterophylla, a traditional Chinese herbal plant. It has high degradation activity to toxins produced by fungal pathogen Fusarium graminearum. Here, we deployed PacBio single-molecule real-time long-read sequencing technology to generate a complete genome assembly for the Acinetobacter schindleri H4-3-C1 strain and obtained 1.59 Gb of clean reads. These reads were assembled to a single circular DNA chromosome with a length of 3,265,024 bp, and no plasmid was found in the genome. Totals of 3,193 coding sequences, 91 transfer RNA, 21 ribosomal RNA, and 75 small RNAs were identified in the genome. This high-quality genome assembly and gene annotation resource will facilitate the excavation of the zearalenone degradation gene and provide valuable resources for preventing and controlling toxigenic fungal diseases of P. heterophylla. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Acinetobacter , Endophytes , Molecular Sequence Annotation , Acinetobacter/genetics , Plasmids , Plant Diseases/microbiology , Genome, Fungal
8.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2277-2280, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35531672

ABSTRACT

Due to the special biological characteristics, Gastrodia elata suffers from high resource consumption and low utilization rate in modern agricultural production, which significantly block the green and healthy development of this industry. Based on the theory and technology in ecological cultivation of Chinese medicinal materials, this study analyzed the challenges in ecological cultivation of G. elata, such as waste of fungus material, a few cultivation modes available, continuous cropping obstacles, frequent occurrence of diseases, and poor stability of ecological structure. According to the production practice, the following suggestions were proposed for ecological cultivation of G. elata: following the principle of environmental protection and no pollution, selecting suitable habitats to yield high-quality medicinal materials, committing to green control of diseases and pests, upgrading industrial structure to maximize the benefits, establishing a sound mechanism for protecting the genetic diversity of wild G. elata, carrying out simulative habitat cultivation to improve medicinal material quality, adopting science-based planning of fungus resources to relieve forestry pressure, enhancing the recycling and utilization of fungus materials, and applying diversified cultivation modes to improve the stability of ecological structure. The result is expected to provide a reference for the quality development of G. elata industry.


Subject(s)
Gastrodia , Plants, Medicinal , Agriculture , Gastrodia/chemistry , Plants, Medicinal/chemistry
9.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2288-2295, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35531674

ABSTRACT

Brown rot is a common disease in the cultivation and production of Gastrodia elata, but its pathogens have not been fully revealed. In this study, the pathogenic fungi were isolated and purified from tubers of 77 G. elata samples with brown rot. Pathogens were identified by the pathogenicity test and morphological and molecular identification. The pathogenicity of each pathogen and its inhibitory effects on Armillaria gallica were compared. The results showed that 119 strains of fungi were isolated from tubers of G. elata infected with brown rot. Among them, the frequency of separation of Ilyonectria fungi was as high as 42.01%. The pathogenicity test showed that the pathogenicity characteristics of six strains of fungi were consistent with the natural symptoms of brown rot in G. elata. The morphological and molecular identification results showed that the six strains belonged to I. cyclaminicola and I. robusta in the Nectriaceae family of Sordariomycetes class, respectively. Both types of fungi could produce pigments, conidia, and chlamycospore, and the growth rate of I. cyclaminicola was significantly higher than that of I. robusta. The comparison of pathogenicity showed that the spots formed by I. cyclaminicola inoculation were significantly larger than those of I. robusta inoculation, suggesting I. cyclaminicola was superior to I. robusta in pathogenicity. The results of confrontation culture showed that I. cyclaminicola and I. robusta could signi-ficantly inhibit the germination and cordage growth of A. gallica. A. gallica also inhibited the growth of pathogens, and I. cyclaminicola was less inhibited as compared with I. robusta. The results of this study revealed for the first time that I. cyclaminicola and I. robusta were the pathogens responsible for G. elata brown rot.


Subject(s)
Gastrodia , Fungi , Plant Tubers , Spores, Fungal , Virulence
10.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2281-2287, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35531673

ABSTRACT

Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.


Subject(s)
Gastrodia , Ecotype , Gastrodia/microbiology , Gene Expression Profiling , Plant Tubers/genetics
11.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2304-2308, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35531676

ABSTRACT

Mycena, a symbiont of Gastrodia elata, promotes seed germination of G. elata and plays a crucial role in the sexual reproduction of G. elata. However, the lack of genetic transformation system of Mycena blocks the research on the interaction mechanism of the two. In order to establish the protoplast transformation system of Mycena, this study analyzed the protoplast enzymatic hydrolysis system, screened the resistance markers and regeneration medium, and explored the transient transformation. After hydrolysis of Mycena hyphae with complexes enzymes for 8 h and centrifugation at 4 000 r·min~(-1), high-concentration and quality protoplast was obtained. The optimum regeneration medium for Mycena was RMV, and the optimum resistance marker was 50 mg·mL~(-1) hygromycin. The pLH-HygB-HuSHXG-GFP-HdSHXG was transformed into the protoplast of Mycena which then expressed GFP. The established protoplast transformation system of Mycena laid a foundation for analyzing the functional genes of Mycena and the molecular mechanism of the symbiosis of Mycena and G. elata.


Subject(s)
Agaricales , Gastrodia , Gastrodia/genetics , Protoplasts , Symbiosis/genetics , Transformation, Genetic
12.
Zhongguo Zhong Yao Za Zhi ; 47(3): 628-634, 2022 Feb.
Article in Zh | MEDLINE | ID: mdl-35178944

ABSTRACT

This study aimed to establish a method for synchronous detection of 14 mycotoxins in Pseudostellariae Radix and investigate its contamination with mycotoxins, so as to provide technical guidance for monitoring the quality of Chinese medicinal materials and medication safety. The sample was extracted with 80% acetonitrile in an oscillator for 1 h, purified using the modified QuEChERS purifying agent(0.1 g PSA + 0.3 g C_(18) + 0.3 g MgSO_4), and separated on a Waters HSS T3 chromatographic column(2.1 mm×100 mm, 1.8 µm). The gradient elution was carried out with 0.1% formic acid in water and acetonitrile, followed by the scanning in the multi-reaction monitoring(MRM) mode and the analysis of mycotoxin contamination in 26 Pseudostellariae Radix samples. The recovery rates of the established method were within the range of 82.17%-113.6%, with the RSD values less than 7% and the limits of quantification(LOQ) being 0.019-0.976 µg·kg~(-1). The detection rate of 14 mycotoxins in 26 batches of medicinal materials was 53.85%. The detection rate of sterigmatocystin(ST) was the highest, followed by those of zearalenone(ZEN), aflatoxin G_2(AFG_2), fumonisin B_1(FB_1), HT-2 toxin, and nivalenol(NIV). Their respective detection rates were 38.46%, 26.92%, 23.08%, 11.54%, 11.54%, and 7.69%, with the pollution ranges being 1.48-69.65, 0.11-31.05, 0.11-0.66, 0.28-0.83, 20.86-42.56, and 0.46-1.84 µg·kg~(-1), respectively. The established method for the detection of 14 mycotoxins is accurate, fast and reliable. The research results have very important practical significance for guiding the monitoring and prevention and control of exogenous fungal contamination of Chinese medicinal materials.


Subject(s)
Aflatoxins , Mycotoxins , Aflatoxins/analysis , Chromatography, High Pressure Liquid/methods , Drug Contamination , Food Contamination/analysis , Mycotoxins/analysis , Plant Roots/chemistry , Tandem Mass Spectrometry/methods
13.
Plant Dis ; 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042495

ABSTRACT

Pseudostellaria heterophylla (family Caryophyllaceae) is a perennial herbaceous plant. Its tuberous roots are highly valued in traditional Chinese medicine. It is mainly cultivated in a geo-authentic production zone located in the Guizhou, Anhui, Shandong, and Fujian provinces of China (Zhao et al. 2016). The herb is widely used for treating lung diseases and as a spleen tonic (Pang et al. 2011). A severe leaf black spot disease was observed on P. heterophylla in China, from 2018 to 2020. Plants displayed water-soaking symptoms in the early stage of infection, then the watery areas turned brown-red and a black mold appeared on the lesions. At a later stage, the leaf spots showed concentric rings surrounded by a yellow halo, and the initial infection site became dry and necrotic (Supplementary Figure S1). Nine infected plants were collected from three cultivation fields in Shibing County (N 27°4'21", E 108°8'0"), Guizhou province, on April 13th, 2019. The fungus was consistently isolated from symptomatic leaves on potato dextrose agar (PDA) medium according to the method described by Larran et al (2002). A total of 22 isolates were obtained, including 7 isolates of Arcopilus and 15 isolates of Trichoderma. The growth rates of isolate MJ2-2b on PDA and oatmeal agar (OA) medium were 3 to 5 mm/day at 25 °C (Supplementary Figure S2A and S2B). Mycelium of isolate MJ2-2b was dense, yellowish-brown on PDA, while it was sparse, bright-red on OA. Also, the mycelium secreted brownish-red pigment on both PDA and OA. Ascomata when mature were water drop and limoniform. Lateral hairs were brown, erect or flexuous, tapering towards the tips. Ascospores when mature were greyish-white to grey, limoniform, or fusiform to pyriform (Supplementary Figure S2C and S2D). Further, the beta-tubulin gene (Tub2) of the fungus was amplified by using primer pairs T1 and TUB4Rd as described by Wang et al (2016) and subjected to sequencing. NCBI nucleotide BLAST results showed that sequences from seven isolates had a 99.86% identity with A. aureus (strain ChL-C, GenBank accession No. MG889987.1) (Supplementary Figure S2F). Molecular phylogenetic analysis by maximum likelihood method using MEGA 7 confirmed that the fungal isolate clustered with A. aureus. Hence, the causal agent was identified as A. aureus based on morphological and molecular characteristics. The sequence was deposited in GenBank (accession No. MW531453). Pathogenicity tests were conducted on 15-day old tissue-cultured seedlings according to Ghanbary et al (2018) (Supplementary Figure S3). Leaves of 16 seedlings were inoculated with 1×1 mm 5-day-old PDA-grown mycelial plugsof the fungal isolate. The experiment was repeated 3 times. After 10 days, the inoculated leaves showed the same symptoms observed on plants in the field. The associated fungal pathogen was consistently re-isolated from the inoculated seedlings and identified by Tub2 gene sequencing. At present, there are no reports of A. aureus causing disease of plants. To the best of our knowledge, this is the first report of leaf black spot disease on P. heterophylla caused by A. aureus in China.

14.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5240-5246, 2021 Oct.
Article in Zh | MEDLINE | ID: mdl-34738425

ABSTRACT

Zearalenone(ZEN) is a mycotoxin produced by Fusarium, possessing estrogen-like effects, carcinogenicity, and multiple toxicities. To seek more efficient and practical agents for biological detoxification and broaden their application, this study isolated 194 bacterial strains from the moldy tuberous root of Pseudostellaria heterophylla, which were co-cultured with ZEN. An efficient ZEN-degrading strain H4-3-C1 was screened out by HPLC and identified as Acinetobacter calcoaceticus by morphological observation and molecular identification. The effects of culture medium, inoculation dose, culture time, pH, and temperature on the degradation of ZEN by H4-3-C1 strain were investigated. The mechanism of ZEN degradation and the degrading effect in Coicis Semen were discussed. The degradation rate of 5 µg·mL~(-1) ZEN by H4-3-C1 strain was 85.77% in the LB medium(pH 6) at 28 ℃/180 r·min~(-1) for 24 h with the inoculation dose of 1%. The degradation rate of ZEN in the supernatant of strain culture was higher than that in the intracellular fluid and thalli. The strain was inferred to secret extracellular enzymes to degrade ZEN. In addition, the H4-3-C1 strain could also degrade ZEN in Coicis Semen. If the initial content of ZEN in Coicis Semen was reduced from 90 µg·g~(-1) to 40.68 µg·g~(-1), the degradation rate could reach 54.80%. This study is expected to provide a new strain and application technology for the biological detoxification of ZEN in food processing products and Chinese medicinal materials.


Subject(s)
Fusarium , Mycotoxins , Zearalenone , Bacteria , Temperature
15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5792-5796, 2021 Nov.
Article in Zh | MEDLINE | ID: mdl-34951166

ABSTRACT

Fusarium is the major pathogen of root rot of Pseudostellaria heterophylla. This study aims to explain the possible distribution of Fusarium species and the contamination of its toxin-chemotypes in tuberous root of P. heterophylla. A total of 89 strains of fungi were isolated from the tuberous root of P. heterophylla. Among them, 29 strains were identified as Fusarium by ITS2 sequence, accounting for 32.5%. They were identified as five species of F. avenaceum, F. tricinctum, F. fujikuroi, F. oxysporum, and F. graminearum based on ß-Tubulin and EF-1α genes. LC-MS/MS detected 18, 1, and 5 strains able to produce ZEN, DON, and T2, which accounted for 62.1%, 3.4%, and 17.2%, respectively. Strain JK3-3 can produce ZEN, DON, and T2, while strains BH1-4-1, BH6-5, and BH16-2 can produce ZEN and T2. PCR detected six key synthase genes of Tri1, Tri7, Tri8, Tri13, PKS14, and PKS13 in strain JK3-3, which synthesized three toxins of ZEN, DON, and T2. Four key synthase genes of Tri8, Tri13, PKS14, and PKS13 were detected in strains BH1-4-1, BH6-5, and BH16-2, which were responsible for the synthesis of ZEN and T2. The results showed that the key genes of toxin biosynthesis were highly correlated with the toxins produced by Fusarium, and the biosynthesis of toxin was strictly controlled by the genetic information of the strain. This study provides a data basis for the targeted prevention and control of exo-genous mycotoxins in P. heterophylla and a possibility for the development of PCR for rapid detection of toxin contamination.


Subject(s)
Caryophyllaceae , Fusarium , Mycotoxins , Chromatography, Liquid , Fusarium/genetics , Tandem Mass Spectrometry
16.
BMC Microbiol ; 20(1): 108, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32370761

ABSTRACT

BACKGROUND: The ternary cropping system of Gastradia elata depends on a symbiotic relationship with the mycorrhizal fungi Armillaria mellea, which decays wood to assimilate nutrition for the growth of G. elata. The composition of microbe flora as key determinants of rhizoshere and mycorrhizoshere soil fertility and health was investigated to understand how G. elata and A. mellea impacted on its composition. The next generation pyrosequencing analysis was applied to assess the shift of structure of microbial community in rhizoshere of G. elata and mycorrhizoshere of A. mellea compared to the control sample under agriculture process. RESULTS: The root-associated microbe floras were significantly impacted by rhizocompartments (including rhizoshere and mycorrhizoshere) and agriculture process. Cropping process of G. elata enhanced the richness and diversity of the microbial community in rhizoshere and mycorrhizoshere soil. Furthermore, planting process of G. elata significantly reduced the abundance of phyla Basidiomycota, Firmicutes and Actinobacteria, while increased the abundance of phyla Ascomycota, Chloroflexi, Proteobacteria, Planctomycetes, and Gemmatimonadetes in rhizoshere and mycorrhizoshere. Besides, A. mellea and G. elata significantly enriched several members of saprophytoic and pathogenic fungus (i.e., Exophiala, Leptodontidium, Cosmospora, Cercophora, Metarhizium, Ilyonectria, and Sporothrix), which will enhance the possibility of G. elata disease incidence. At the same time, the ternary cropping system significantly deterred several members of beneficial ectomycorrhizal fungus (i.e., Russula, Sebacina, and Amanita), which will reduce the ability to protect G. elata from diseases. CONCLUSIONS: In the ternary cropping system of G. elata, A. mellea and G. elata lead to imbalance of microbial community in rhizoshere and mycorrhizoshere soil, suggested that further studies on maintaining the balance of microbial community in A. mellea mycorrhizosphere and G. elata rhizosphere soil under field conditions may provide a promising avenue for high yield and high quality G. elata.


Subject(s)
Armillaria/growth & development , Bacteria/classification , Fungi/cytology , Orchidaceae/growth & development , Sequence Analysis, DNA/methods , Wood/metabolism , Agriculture , Armillaria/metabolism , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/genetics , Fungi/growth & development , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Mycorrhizae/growth & development , Orchidaceae/microbiology , Plant Roots/growth & development , Plant Roots/microbiology , Rhizosphere , Soil Microbiology
17.
Zhongguo Zhong Yao Za Zhi ; 45(3): 463-471, 2020 Feb.
Article in Zh | MEDLINE | ID: mdl-32237501

ABSTRACT

Gastrodia elata is a heterotrophic plant that needed to be symbiotic with Armillaria. The obstacle of continuous cropping in G. elata is serious during the G. elata cultivation, and the mechanism of obstacle in G. elata continuous cropping had not been solved. The planting of G. elata-Phallus impudicus is a new sequential planting pattern adopted in Guizhou province, but the effect of the cultivation on soil microbial community structure is still unclear. In this study, we collected four soil samples for the research including the soil without planted G. elata as control(CK), rhizosphere soil samples tightly adhering to the G. elata surface(GE), rhizosphere soil samples tightly adhering to Armillaria which was symbiotic with G. elata(AGE), the rhizosphere soil of P. impudicus planting after G. elata cultivation(PI). In order to explore the mechanism, the research study on the soil of G. elata-P. impudicus by using ITS and 16 S rDNA high-throughput sequencing technologies to detect soil microbial community structure including fungi and bacteria in the soil of CK, AGE, GE and PI. OTU clustering and PCA analysis of soil samples showed that the soil microbial diversity was relatively similar in AGE and GE. And the soil microbial in PI and CK clustered together. The results showed that AGE and GE had similar soil microbial diversity, as well as PI and CK. Compared with CK, the soil microbial diversity and abundance in AGE and GE were significantly increased. But the microbial diversity and abundance decreased in PI compared with AGE and GE. The annotation indicated that the abundance of Basidiomycota, Acidobacteria and Chloroflexi decreased, and that of Ascomycota, Zygomycota and Proteobacteria increased in AGE and GE compared with CK. In contrast to AGE and GE, PI was the opposite. The abundance of Basidiomycota, Acidobacteria and Chloroflexi increased in PI compared with AGE and GE. The abundance of microorganisms in the soil of PI and CK was similar. In addition, the co-culture of Armillaria and P. impudicus indicated that P. impudicus had obvious antagonistic effects on the growth of Armillaria. Therefore, it is speculated that the mechanism of G. elata-P. impudicus planting pattern related to the change of soil microbial. And we supposed that P. impudicus might inhibit the growth of Armillaria and change the soil microbial community structure and the abundance of soil microbial. And the soil microbial community structure was restored to a state close to that of uncultivated G. elata. Thus, the structure of soil microbial community planting G. elata could be restored by P. impudicus planting.


Subject(s)
Agaricales/growth & development , Gastrodia/growth & development , Microbiota , Soil Microbiology , Bacteria/classification , Fungi/classification , Gastrodia/microbiology , Rhizosphere
18.
Zhongguo Zhong Yao Za Zhi ; 45(3): 472-477, 2020 Feb.
Article in Zh | MEDLINE | ID: mdl-32237502

ABSTRACT

The phenomenon that waste of fungus-growing materials in the planting process of Gastrodia elata is very common. It has been proved by practice that the used fungus-growing materials planted with G. elata can be used to plant Phallus impudicus. But the mechanism is unclear. In this study, we compared the different infested-capacity of Armillaria gallica and Phallus impudicus by morphological anatomy of the used fungus-growing materials. We also compared the differences on the two fungi consumed the main contents of fungus-growing materials, cellulose, lignin and hemicellulose, by using nitric acid-95% ethanol method, sulfuric acid method and tetrabromide method respectively, so that to explore the mechanism of A. gallica and P. impudicus recycle the fungus-growing materials, and to provide scientific basis for recycling the used fungus-growing materials of G. elata. The results showed that A. gallica had a strong ability to invade some parts outside the vascular cambium, but it had a weak ability to invade some parts inside the vascular cambium, while P. impudicus had a strong ability to invade the same parts. The contents of lignin and cellulose, which from inside and outside the vascular cambium of fungus-growing materials were significantly different. In the parts of outside the vascular cambium of fungus-growing materials, A. gallica degraded more lignin and cellulose, while P. impudicus degraded more hemicellulose. In the parts of inside the vascular cambium of fungus-growing materials, A. gallica degraded more cellulose, while P. impudicus degraded more hemicellulose. The present results suggested that A. gallica and P. impudicus made differential utilization of the carbon source in the fungus-growing materials to realize that P. impudicus recycle the used fungus-growing materials of G. elata. A. gallica used lignin and cellulose as the main carbon source, while P. impudicus used hemicellulose as the main carbon source.


Subject(s)
Agaricales/growth & development , Armillaria/growth & development , Cellulose/metabolism , Lignin/metabolism , Polysaccharides/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 45(3): 478-484, 2020 Feb.
Article in Zh | MEDLINE | ID: mdl-32237503

ABSTRACT

Fungal disease is an important factor restricting the healthy development of Gastrodia elata industry. The control of fungal disease in G. elata is an important issue in production. This paper makes a detailed investigation on the current situation of G. elata disease in China through statistics on the failure rate, rotten pit rate and occurrence rate of G. elata disease in the main producing areas of China. It was found that G. elata disease was mainly infected from the top bud and junction, causing the occurrence rate of disease was 6%-17%, and the yield decreased by 10%-30%. The 23 dominant fungi were isolated from 18 typical G. elata disease samples. Through identification of colony morphology, mycelium morphology, spore morphology and genetic characteristics, they were finally identified as 13 species, belonging to 7 families and 7 genera. Trichoderma harzianum, Ilyonectria sp. and Ilyonectria destructans are the most frequently separated. Their isolation frequency were 22.22%,16.67%,16.67% respectively. Ilyonectria sp. and I. destructans were the first time isolated from G. elata disease samples. They may be the main pathogens causing soil-borne diseases of G. elata. T. harzianum has certain potential as Gastrodia biocontrol bacteria. This study can provide a theoretical basis for the research and development of control technology of Gastrodia fungi disease.


Subject(s)
Fungi/pathogenicity , Gastrodia/microbiology , Plant Diseases/microbiology , China , Fungi/classification
20.
Zhongguo Zhong Yao Za Zhi ; 45(3): 485-490, 2020 Feb.
Article in Zh | MEDLINE | ID: mdl-32237504

ABSTRACT

The study is aimed to create seed materials and dissect the molecular mechanism of sexual propagation of Gastrodia elata. In this research, thirteen characteristics of flowers, flower stem, fruits, seeds and embryo of G.elata f. glauca and G.elata f. elata after bolting at room temperature(RT) and constant temperature(CT, 22 ℃) were determined. It was found that the constant temperature condition could prolong the bolting duration of G.elata and increased the number of flowers, while the variety of G.elata only affected the bolting duration, but had no effect on the number of flowers, and the G.elata f. elata was more likely to bolting than the G.elata f. glauca. The variety of G.elata was the main factor affecting the time of dehiscent fruit of G.elata, the temperature was the main factor affecting the fruits number and fruits diameter, and the constant temperature was more conducive to the fruits shape of G.elata than the room temperature. There was no significant difference in seed phenotype of G.elata varieties, but the seed embryo of G.elata seeds cultivated at constant temperature was fuller than that of G.elata cultivated at room temperature, and temperature had less influence on the seed phenotype of G.elata. But it was interesting to find that temperature and varieties had greater influence on the seed embryo of G.elata, constant temperature cultivation was more conducive to the formation of seed embryo of G.elata, and more the seed embryo of G.elata f. elata was easier to form than the seed embryo of G.elata f. glauca. However, the development of seeds and embryos of G.elata was significantly affected, and the development of seeds and embryos of G.elata f. glauca was more sensitive to temperature than G.elata f. elata. The research suggested that it is advisable for G.elata to produce seed materials by bolting at constant temperature(22 ℃).


Subject(s)
Fruit/growth & development , Gastrodia/growth & development , Seeds/growth & development , Temperature , Phenotype , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL