Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Drug Chem Toxicol ; : 1-8, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291651

ABSTRACT

Wuzhuyu decoction (WZYD) is a well-known classic traditional Chinese medicine prescription and has been widely used to treat headache, nausea, vomiting, insomnia, etc. However, little published information is available about its safety. Our aim was to investigate the acute and subacute oral toxicity of WZYD extract in rats following the technical guidelines from China's National Medical Products Administration (NMPA) for single and repeated doses toxicity studies of drugs. Acute oral toxicity was assessed in rats via oral administration of WZYD extract at 4 g/kg three times within a day followed by a 14-day observation period. To evaluate the subacute toxicity, rats were orally administered with WZYD extract at doses of 0, 0.44, 1.33, and 4 g/kg for 28 days. The items examined included clinical signs, body weight, food consumption, hematological and biochemical parameters, bone marrow smear, organ index, and histopathology. After the rats were administered with 12 g/kg (3 × 4 g/kg) WZYD extract, no mortality and toxic effects were observed during the observation period. In the subacute toxicity study, WZYD extract did not cause any significant treatment-related abnormality in each examined item of rats, so the no observed adverse effect level (NOAEL) of WZYD extract for 28 days orally administered to rats is considered to be 4 g/kg, which is approximately 80-fold of its clinical proposed dosage.

2.
J Virol ; 96(22): e0112522, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36326274

ABSTRACT

Lyssaviruses cause rabies, which is an acute neurological disease responsible for more than 59,000 human deaths annually and has no available effective treatments. The phosphoprotein (P) of lyssaviruses (lyssavirus-P) plays multiple roles in virus replication and immune evasion. Lyssavirus-P has been identified as the major type I interferon (IFN-I) antagonist, while the precise site and precise molecular mechanism remain unclear. Herein, we found that substitution of site 179 of lyssavirus-P from serine (Ser) to proline (Pro) impairs its antagonism function of IFN-I by sequence alignment and site mutations. Subsequent studies demonstrated that lyssavirus-P containing S179 specifically interacted with I-kappa B kinase ε (IKKε). Specifically, lyssavirus-P containing S179 interacted simultaneously with the kinase domain (KD) and scaffold dimerization domain (SDD) of IKKε, competing with TNF receptor-associated factor 3 (TRAF3) and IFN regulatory factor 3 (IRF3) for binding with IKKε, leading to the inhibition of IFN production. Furthermore, S179 was involved in the viral pathogenicity of the typical lyssavirus rabies virus in a mouse model. Interestingly, we found that S179 is conserved among most lyssavirus-P and functional for IFN antagonism. Collectively, we identified S179 of lyssavirus-P is essential for IFN-I inhibition, which provides deep insight into the immune evasion strategies of lyssaviruses. IMPORTANCE Interferon (IFN) and the IFN-induced cellular antiviral response constitute the first line of defense against viral invasion. Evading host innate immunity, especially IFN signaling, is the key step required for lyssaviruses to establish infection. In this study, S179 of lyssavirus phosphoprotein (lyssavirus-P) was identified as the key site for antagonizing IFN-I production. Mechanistically, lyssavirus-P containing S179 specifically targets the key kinase IKKε and disrupts its interaction with TRAF3 and IRF3. S179P mutation in the P protein of the typical lyssavirus rabies virus (RABV) attenuated its pathogenicity in a mouse model. Our findings provide deep insight into the immune evasion strategies of lyssaviruses, which is helpful for the development of effective antiviral therapeutics.


Subject(s)
Interferon Type I , Lyssavirus , Rabies virus , Animals , Mice , Humans , Lyssavirus/genetics , I-kappa B Kinase/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , TNF Receptor-Associated Factor 3/metabolism , Interferon Type I/metabolism , Antiviral Agents
3.
J Virol ; 96(4): e0194221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34878915

ABSTRACT

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infections and suggests that OAA treatment is a strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to energy requirements after RABV infection. Our study also indicates the role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Subject(s)
Brain/metabolism , Glucose/metabolism , Rabies virus/pathogenicity , Rabies/metabolism , Acetylation , Animals , Brain/drug effects , Brain/immunology , Brain/virology , Energy Metabolism , Inflammation , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/therapeutic use , Proteome/metabolism , Rabies/drug therapy , Rabies/virology
4.
J Virol ; 96(17): e0105022, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36005758

ABSTRACT

Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.


Subject(s)
Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 8/metabolism , Rabies virus , Rabies/virology , Animals , Brain , Endothelial Cells/metabolism , Matrix Metalloproteinase 8/genetics , Mice , NF-kappa B/metabolism
5.
Pulm Pharmacol Ther ; 83: 102268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967761

ABSTRACT

Pulmonary fibrosis (PF) is a lethal disease characterized by a progressive decline in lung function. Currently, lung transplantation remains the only available treatment for PF. However, both artemisinin (ART) and hydroxychloroquine (HCQ) possess potential antifibrotic properties. This study aimed to investigate the effects and mechanisms of a compound known as Artemisinin-Hydroxychloroquine (AH) in treating PF, specifically by targeting the TGF-ß1/Smad2/3 pathway. To do this, we utilized an animal model of PF induced by a single tracheal drip of bleomycin (BLM) in Sprague-Dawley (SD) rats. The PF animal models were administered various doses of AH, and the efficacy and safety of AH were evaluated through pulmonary function testing, blood routine tests, serum biochemistry tests, organ index measurements, and pathological examinations. Additionally, Elisa, western blotting, and qPCR techniques were employed to explore the potential molecular mechanisms of AH in treating PF. Our findings reveal that AH effectively and safely alleviate PF by inhibiting BLM-induced specific inflammation, reducing extracellular matrix (ECM) deposition, and interfering with the TGF-ß1/Smad2/3 signaling pathway. Notably, the windfall for this study is that the inhibition of ECM may initiate self-healing in the BLM-induced PF animal model. In conclusion, AH shows promise as a potential therapeutic drug for PF, as it inhibits disease progression through the TGF-ß1/Smad2/3 signaling pathway.


Subject(s)
Artemisinins , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Bleomycin/toxicity , Hydroxychloroquine/adverse effects , Rats, Sprague-Dawley , Signal Transduction , Artemisinins/adverse effects , Lung
6.
Drug Chem Toxicol ; 46(5): 995-1003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36039016

ABSTRACT

Artemisinin-hydroxychloroquine sulfate tablets (AH) are regarded as a relatively inexpensive and novel combination therapy for the treatment of various forms of malaria, particularly aminoquinoline drugs-resistant strains of Plasmodium falciparum. Our aim was to conduct acute and subacute oral toxicity studies in non-rodents to obtain more nonclinical data on the safety of AH. Acute toxicity evaluation was performed in beagle dogs at single doses of 230, 530, 790, 1180, 2660, and 5000 mg/kg. Beagle dogs at doses of 0, 56, 84, and 126 mg/kg were used to assess subacute toxicity for 14 days. The approximate lethal dose range for acute oral administration of AH in dogs is found to be 790-1180 mg/kg, and toxic symptoms prior to death include gait instability, limb weakness, mental fatigue, tachypnea, and convulsion. Repeated doses of AH in dogs caused vomiting, soft feces, decreased activity, anorexia, and splenic red pulp vacuolation. Of note, AH could reduce body weight gain and prolong the QTc interval of individual dogs. Therefore, the no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of oral administration of AH for 14 days in dogs are determined to be 84 mg/kg and 126 mg/kg, respectively.


Subject(s)
Artemisinins , Hydroxychloroquine , Dogs , Animals , Artemisinins/toxicity , No-Observed-Adverse-Effect Level , Administration, Oral , Tablets
7.
J Virol ; 95(24): e0082921, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34613801

ABSTRACT

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expressions of pattern recognition receptors (PRRs) also cause diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not yet been revealed. Based on TLR4-deficient (TLR4-/-) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type 2 dendritic cells (CD8α- CD11b+ cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of follicular helper T (Tfh) cells promotes the proliferation of germinal center (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4-deficient (TLR4-/-) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG compared to that occurred in wild-type (WT) mice. As a consequence, TLR4-/- mice exhibited higher mortality than that of WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α+ CD11b-), a subset of cDCs known to induce CD4+ T-cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


Subject(s)
Dendritic Cells/immunology , Gene Expression Regulation/immunology , Immunity, Humoral/immunology , Lymphoid Tissue/immunology , Rabies virus/immunology , Toll-Like Receptor 4/genetics , Animals , Antibodies, Viral/blood , Female , Immunization , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Rabies/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/immunology , Toll-Like Receptor 4/immunology
8.
J Virol ; 95(23): e0141421, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34495701

ABSTRACT

Rabies, caused by rabies virus (RABV), remains a serious threat to public health in most countries worldwide. At present, the administration of rabies vaccines has been the most effective strategy to control rabies. Herein, we evaluate the effect of colloidal manganese salt (Mn jelly [MnJ]) as an adjuvant of rabies vaccine in mice, cats, and dogs. The results showed that MnJ promoted type I interferon (IFN-I) and cytokine production in vitro and the maturation of dendritic cells (DCs) in vitro and in vivo. Besides, MnJ serving as an adjuvant for rabies vaccines could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, plasma cells (PCs), and RABV-specific antibody-secreting cells (ASCs), consequently improve the immunogenicity of rabies vaccines, and provide better protection against virulent RABV challenge. Similarly, MnJ enhanced the humoral immune response in cats and dogs as well. Collectively, our results suggest that MnJ can facilitate the maturation of DCs during rabies vaccination, which can be a promising adjuvant candidate for rabies vaccines. IMPORTANCE Extending the humoral immune response by using adjuvants is an important strategy for vaccine development. In this study, a novel adjuvant, MnJ, supplemented in rabies vaccines was evaluated in mice, cats, and dogs. Our results in the mouse model revealed that MnJ increased the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs, resulting in enhanced immunogenicity and protection rate of rabies vaccines. We further found that MnJ had the same stimulative effect in cats and dogs. Our study provides the first evidence that MnJ serving as a novel adjuvant of rabies vaccines can boost the immune response in both a mouse and pet model.


Subject(s)
Adjuvants, Immunologic , Manganese/pharmacology , Rabies Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibody-Producing Cells/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes , Cats , Dendritic Cells/immunology , Disease Models, Animal , Dogs , Female , Germinal Center/immunology , Immunity, Humoral , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Plasma Cells/immunology , Rabies/immunology , Rabies virus/immunology , Vaccination , Vaccine Development
9.
Regul Toxicol Pharmacol ; 129: 105114, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007669

ABSTRACT

Artemisinin-hydroxychloroquine sulfate tablets (AH) are considered a relatively inexpensive and novel combination therapy for treating all forms of malaria, especially aminoquinoline drugs-resistant strains of P.falciparum. We aim to carry out acute and subacute oral toxicity studies in rats to acquire preclinical data on the safety of AH. Acute toxicity was evaluated in Sprague-Dawley (SD) rats at a single dose of 1980, 2970, 4450, 6670, and 10000 mg/kg. A 14-days subacute toxicity was assessed in SD rats at doses of 0, 146, 219, 328, and 429 mg/kg. The median lethal dose (LD50) of acute oral administration of AH in rats is found to be 3119 mg/kg, and toxic symptoms include decreased spontaneous activity, dyspnea, bristling, soft feces, spasticity, and convulsion. Repeated doses of AH have toxic effects on the nervous system, skin, blood system, liver, kidney, and spleen in rats. The main toxic reactions include epilation, emaciation, mental irritability, decreased body weight gain and food consumption, changes in the hematological and biochemical parameters, especially pathological lesions in the liver, kidney, and spleen. The no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of AH are considered to be 219 mg/kg and 328 mg/kg, respectively.


Subject(s)
Antimalarials/toxicity , Artemisinins/toxicity , Hydroxychloroquine/toxicity , Administration, Oral , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacology , Artemisinins/administration & dosage , Artemisinins/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Female , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/pharmacology , Lethal Dose 50 , Male , No-Observed-Adverse-Effect Level , Random Allocation , Rats , Rats, Sprague-Dawley , Toxicity Tests, Acute , Toxicity Tests, Subacute
10.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34269675

ABSTRACT

Rabies virus (RABV) infection can initiate the host immune defence response and induce an antiviral state characterized by the expression of interferon (IFN)-stimulated genes (ISGs), among which the family of genes of IFN-induced protein with tetratricopeptide repeats (Ifits) are prominent representatives. Herein, we demonstrated that the mRNA and protein levels of Ifit1, Ifit2 and Ifit3 were highly increased in cultured cells and mouse brains after RABV infection. Recombinant RABV expressing Ifit3, designated rRABV-Ifit3, displayed a lower pathogenicity than the parent RABV in C57BL/6 mice after intramuscular administration, and Ifit3-deficient mice exhibited higher susceptibility to RABV infection and higher mortality during RABV infection. Moreover, compared with their individual expressions, co-expression of Ifit2 and Ifit3 could more effectively inhibit RABV replication in vitro. These results indicate that murine Ifit3 plays an essential role in restricting the replication and reducing the pathogenicity of RABV. Ifit3 acts synergistically with Ifit2 to inhibit RABV replication, providing further insight into the function and complexity of the Ifit family.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Rabies virus/physiology , Rabies/virology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Brain/metabolism , Brain/virology , Cell Line , Female , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rabies/immunology , Rabies virus/pathogenicity , Transcriptome , Viral Load , Virus Replication
11.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32796066

ABSTRACT

Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could interact with RABV phosphoprotein (P protein). Mutation and immunoprecipitation analyses revealed that the Y128 site of P protein is critical for its interaction with IIGP1. Further study demonstrated that this interaction impeded the dimerization of P protein and thus suppressed RABV replication. Collectively, our findings for the first reveal a novel role of IIGP1 in restricting a typical neurotropic virus, RABV, which will provide fresh insight into the function of this mouse-specific ISG.IMPORTANCE Interferon and its downstream products, ISGs, are essential in defending against pathogen invasion. One of the ISGs, IIGP1, has been found to constrain intracellular parasite infection by disrupting their vacuole membranes. However, the role of IIGP1 in limiting viral infection is unclear. In this study, we show that infection with a typical neurotropic virus, RABV, can induce upregulation of IIGP1, which, in turn, suppresses RABV by interacting with its phosphoprotein (P protein) and thus blocking the dimerization of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.


Subject(s)
GTP Phosphohydrolases/genetics , Phosphoproteins/genetics , Rabies virus/genetics , Rabies/genetics , Viral Proteins/genetics , Virus Replication/genetics , Animals , Cell Line, Tumor , Female , GTP Phosphohydrolases/deficiency , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/metabolism , Neuroglia/virology , Neurons/metabolism , Neurons/virology , Phosphoproteins/metabolism , Protein Multimerization , Rabies/mortality , Rabies/pathology , Rabies/virology , Rabies virus/growth & development , Rabies virus/pathogenicity , Signal Transduction , Survival Analysis , Viral Proteins/metabolism
12.
Arch Virol ; 164(12): 2963-2974, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31552533

ABSTRACT

Cholesterol-25-hydroxylase (CH25H) is a reticulum-associated membrane protein that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). Recent studies have revealed that CH25H is an interferon-stimulated gene (ISG) that suppresses infection by several viruses. In the present study, we found that overexpression of both human and murine CH25H inhibited rabies virus (RABV) infection in HEK-293T (293T) cells. In contrast, silencing of CH25H enhanced RABV replication in 293T cells, and a catalytic mutant of CH25H lost its ability to inhibit RABV infection. Treatment with the oxysterol 25-hydroxycholesterol (25HC), the product of CH25H, dramatically decreased RABV replication in 293T, BSR and N2a cells by inhibiting viral membrane penetration. These data provide insights into the antiviral function of CH25H against RABV infection, which can potentially be used as a therapeutic agent for rabies.


Subject(s)
Rabies virus/physiology , Rabies/enzymology , Steroid Hydroxylases/metabolism , Virus Internalization , Animals , Cell Line , Host-Pathogen Interactions , Humans , Hydroxycholesterols/metabolism , Mice , Rabies/genetics , Rabies/virology , Rabies virus/genetics , Steroid Hydroxylases/genetics , Virus Replication
13.
Regul Toxicol Pharmacol ; 109: 104486, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31580888

ABSTRACT

Artemisinin-piperaquine tablet (trade name Artequick, ATQ), is a novel combination therapy for the treatment of malaria and especially for resistant P.falciparum malaria. The aim of our study was to assess the potential sub-acute toxicity profile of ATQ by oral administration route in rhesus monkeys. Monkeys were administrated once daily with doses of ATQ (39.1, 78.2, 156.4 mg/kg) for 21 days and then followed-up a 56-day recovery period. The administration of ATQ at high dose produced significant changes in the clinical signs primarily involved in gastrointestinal and nervous systems. Body weight loss, significant decrease in food consumption and body temperature were observed in monkeys at high dose. Various hematological and biochemical parameters changes, and significant pathological lesions (adrenal gland, thymus and femur epiphyseal) were observed in the middle and high dose group at the end of the treatment period. However, the toxic effects of ATQ were reversed and delayed adverse drug reaction did not occur during the recovery period. Based on the results of this study, the no-observed-adverse-effect level for ATQ was considered to be 39.1 mg/kg in rhesus monkeys.


Subject(s)
Antimalarials/toxicity , Artemisinins/toxicity , Gastrointestinal Tract/drug effects , Nervous System/drug effects , Quinolines/toxicity , Administration, Oral , Animals , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Body Temperature/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Feeding Behavior/drug effects , Female , Macaca mulatta , Male , No-Observed-Adverse-Effect Level , Quinolines/administration & dosage , Tablets , Toxicity Tests, Subacute , Weight Loss/drug effects
14.
Autophagy ; : 1-18, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38566321

ABSTRACT

Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; µm: micrometer; µM: micromole.

15.
mBio ; 15(3): e0288023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349129

ABSTRACT

Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.


Subject(s)
Lyssavirus , Rabies virus , Rabies , Animals , Dogs , Lyssavirus/genetics , Tubulin/metabolism , NAD/metabolism , Rabies virus/genetics , Rabies virus/metabolism , Rabies/metabolism , Neurons , Microtubules/metabolism , Mitochondria/metabolism , Amino Acids/metabolism , Nerve Degeneration/metabolism , Adenosine Triphosphate/metabolism
16.
mBio ; 14(4): e0086723, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37222520

ABSTRACT

The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-κB and IRF3-mediated IFN-I production by targeting the 3' untranslated region (3' UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy. IMPORTANCE The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3' UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-κB. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.


Subject(s)
Interferon Type I , MicroRNAs , Virus Diseases , Humans , Animals , Mice , NF-kappa B/metabolism , 3' Untranslated Regions , MicroRNAs/metabolism , Virus Diseases/genetics , Interferon Type I/genetics , Interferon Type I/metabolism , Antiviral Agents/pharmacology , Virus Replication , Protein Serine-Threonine Kinases/genetics
17.
Prev Med Rep ; 32: 102154, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36852307

ABSTRACT

We conducted a study on the Trobriand Islands of Papua New Guinea (PNG) in 2018 to verify the safety and efficacy of the artemisinin-piperaquine (AP) mass drug administration (MDA) campaign in regions with moderate to high mixed malaria transmission. Based on the natural topography of the Trobriand Islands, 44,855 residents from 92 villages on the islands were enrolled and divided into the main and outer islands. Three rounds of MDA were conducted using grid-based management. The primary endpoint was the coverage rate. Adverse reactions, parasitemia, and malaria morbidity were the secondary endpoints. There were 36,716 people living in 75 villages on the main island, and the MDA coverage rate was 92.58-95.68%. Furthermore, 8,139 people living in 17 villages on the outer islands had a coverage rate of 94.93-96.11%. The adverse reactions were mild in both groups, and parasitemia decreased by 87.2% after one year of surveillance. The average annual malaria morbidity has decreased by 89.3% after the program for four years. High compliance and mild adverse reactions indicated that the MDA campaign with AP was safe. The short-term effect is relatively ideal, but the evidence for long-term effect evaluation is insufficient.

18.
Redox Biol ; 64: 102769, 2023 08.
Article in English | MEDLINE | ID: mdl-37285742

ABSTRACT

Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.


Subject(s)
Virus Internalization , Animals , Mice , Cholesterol/metabolism , COVID-19/metabolism , COVID-19/virology , Homeostasis , SARS-CoV-2/metabolism , Cholesterol 24-Hydroxylase/metabolism
19.
Open Forum Infect Dis ; 10(3): ofad076, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36910690

ABSTRACT

Background: Mass drug administration (MDA) is a powerful tool for malaria control, but the medicines to use, dosing, number of rounds, and potential selection of drug resistance remain open questions. Methods: Two monthly rounds of artemisinin-piperaquine (AP), each comprising 2 daily doses, were administered across the 7 districts of Grande Comore Island. In 3 districts, low-dose primaquine (PMQLD) was also given on the first day of each monthly round. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and genetic markers of potential drug resistance were evaluated. Results: Average population coverages of 80%-82% were achieved with AP in 4 districts (registered population 258 986) and AP + PMQLD in 3 districts (83 696). The effectiveness of MDA was 96.27% (95% confidence interval [CI], 95.27%-97.06%; P < .00001) in the 4 AP districts and 97.46% (95% CI, 94.54%-98.82%; P < .00001) in the 3 AP + PMQLD districts. In comparative statistical modeling, the effectiveness of the 2 monthly rounds on Grande Comore Island was nearly as high as that of 3 monthly rounds of AP or AP + PMQLD in our earlier study on Anjouan Island. Surveys of pre-MDA and post-MDA samples showed no significant changes in PfK13 polymorphism rates, and no PfCRT mutations previously linked to piperaquine resistance in Southeast Asia were identified. Conclusions: MDA with 2 monthly rounds of 2 daily doses of AP was highly effective on Grande Comore Island. The feasibility and lower expense of this 2-month versus 3-month regimen of AP may offer advantages for MDA programs in appropriate settings.

20.
BMC Complement Med Ther ; 22(1): 56, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35241045

ABSTRACT

BACKGROUND: Novel Corona Virus Disease 2019 (COVID-19) is closely associated with cytokines storms. The Chinese medicinal herb Artemisia annua L. (A. annua) has been traditionally used to control many inflammatory diseases, such as malaria and rheumatoid arthritis. We performed network analysis and employed molecular docking and network analysis to elucidate active components or targets and the underlying mechanisms of A. annua for the treatment of COVID-19. METHODS: Active components of A. annua were identified through the TCMSP database according to their oral bioavailability (OB) and drug-likeness (DL). Moreover, target genes associated with COVID-19 were mined from GeneCards, OMIM, and TTD. A compound-target (C-T) network was constructed to predict the relationship of active components with the targets. A Compound-disease-target (C-D-T) network has been built to reveal the direct therapeutic target for COVID-19. Molecular docking, molecular dynamics simulation studies (MD), and MM-GBSA binding free energy calculations were used to the closest molecules and targets between A. annua and COVID-19. RESULTS: In our network, GO, and KEGG analysis indicated that A. annua acted in response to COVID-19 by regulating inflammatory response, proliferation, differentiation, and apoptosis. The molecular docking results manifested excellent results to verify the binding capacity between the hub components and hub targets in COVID-19. MD and MM-GBSA data showed quercetin to be the more effective candidate against the virus by target MAPK1, and kaempferol to be the other more effective candidate against the virus by target TP53. We identified A. annua's potentially active compounds and targets associated with them that act against COVID-19. CONCLUSIONS: These findings suggest that A. annua may prevent and inhibit the inflammatory processes related to COVID-19.


Subject(s)
Artemisia annua , COVID-19 Drug Treatment , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Humans , Molecular Docking Simulation , Network Pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL