Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 863
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 36(8): 2893-2907, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38735686

ABSTRACT

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.


Subject(s)
Gene Expression Regulation, Plant , Laccase , MicroRNAs , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Oryza/enzymology , Laccase/metabolism , Laccase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorylation , Edible Grain/growth & development , Edible Grain/genetics , Edible Grain/metabolism , Signal Transduction , Plants, Genetically Modified , Brassinosteroids/metabolism
2.
Plant Physiol ; 194(4): 2101-2116, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37995372

ABSTRACT

The precise timing of flowering plays a pivotal role in ensuring successful plant reproduction and seed production. This process is intricately governed by complex genetic networks that integrate internal and external signals. This study delved into the regulatory function of microRNA397 (miR397) and its target gene LACCASE-15 (OsLAC15) in modulating flowering traits in rice (Oryza sativa). Overexpression of miR397 led to earlier heading dates, decreased number of leaves on the main stem, and accelerated differentiation of the spikelet meristem. Conversely, overexpression of OsLAC15 resulted in delayed flowering and prolonged vegetative growth. Through biochemical and physiological assays, we uncovered that miR397-OsLAC15 had a profound impact on carbohydrate accumulation and photosynthetic assimilation, consequently enhancing the photosynthetic intensity in miR397-overexpressing rice plants. Notably, we identified that OsLAC15 is at least partially localized within the peroxisome organelle, where it regulates the photorespiration pathway. Moreover, we observed that a high CO2 concentration could rescue the late flowering phenotype in OsLAC15-overexpressing plants. These findings shed valuable insights into the regulatory mechanisms of miR397-OsLAC15 in rice flowering and provided potential strategies for developing crop varieties with early flowering and high-yield traits through genetic breeding.


Subject(s)
Oryza , Oryza/metabolism , Flowers/physiology , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Reproduction , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36597993

ABSTRACT

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Subject(s)
Adenosine , Methyltransferases , Adenosine/metabolism , Methyltransferases/genetics , Homeostasis
4.
Antimicrob Agents Chemother ; 68(7): e0042024, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38780261

ABSTRACT

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Humans , Hepatocytes/virology , Hepatocytes/drug effects , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Mice , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Viral Core Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis B Core Antigens/metabolism , Capsid/metabolism , Capsid/drug effects , Liver/virology , Liver/drug effects , Liver/metabolism , Hepatitis B Surface Antigens/metabolism , Virus Assembly/drug effects , Apoptosis/drug effects , Virus Replication/drug effects
5.
Small ; 20(15): e2305296, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010122

ABSTRACT

Developing a highly active, durable, and low-platinum-based electrocatalyst for the cathodic oxygen reduction reaction (ORR) is for breaking the bottleneck of large-scale applications of proton exchange membrane fuel cells (PEMFCs). Herein, ultrafine PtZn intermetallic nanoparticles with low Pt-loading and trace germanium (Ge) involvement confined in the nitrogen-doped porous carbon (Ge-L10-PtZn@N-C) are reported. The Ge-L10-PtZn@N-C exhibit superior ORR activity with a mass activity of 3.04 A mg-1 Pt and specific activity of 4.69 mA cm-2, ≈12.2- and 10.2-times improvement compared to the commercial Pt/C (20%) at 0.90 V in 0.1 m KOH. The cathodic catalyst Ge-L10-PtZn@N-C assembled in the PEMFC shows encouraging peak power densities of 316.5 (at 0.86 V) and 417.2 mW cm-2 (at 0.91 V) in alkaline and acidic fuel-cell, respectively. The combination of experiment and density functional theory calculations (DFT) results robustly reveal that the participation of trace Ge can not only trigger a "growth site locking effect" to effectively inhibit nanoparticle growth, bring miniature nanoparticles, enhance dispersion uniformity, and achieve the exposure of the more electrochemical active site, but also effectively modulates the electronic structure, hence optimizing the adsorption/desorption of the oxygen intermediates.

6.
Small ; 20(31): e2309583, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38446095

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.


Subject(s)
Indoles , Polymers , Triple Negative Breast Neoplasms , Xanthones , Xanthones/chemistry , Xanthones/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Humans , Animals , Cell Line, Tumor , Female , Porosity , Mice , Nanoparticles/chemistry
7.
Appl Environ Microbiol ; 90(2): e0109023, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38259075

ABSTRACT

Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.


Subject(s)
Bacteria , Euryarchaeota , Phylogeny , Acetates/metabolism , Bacteria, Anaerobic/metabolism , Euryarchaeota/metabolism , Anaerobiosis , Oxidation-Reduction , Firmicutes/metabolism , Methane/metabolism , Bioreactors/microbiology
8.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720268

ABSTRACT

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Subject(s)
Gene Expression Regulation, Fungal , Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation
9.
Plant Cell ; 33(8): 2685-2700, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34003932

ABSTRACT

MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.


Subject(s)
Oryza/physiology , Plant Proteins/metabolism , Spores/growth & development , Ubiquitin/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Gene Expression Regulation, Plant , Lysine/metabolism , Meiosis , Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Spores/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
10.
FASEB J ; 37(6): e22965, 2023 06.
Article in English | MEDLINE | ID: mdl-37171272

ABSTRACT

Chronic alcohol consumption is a major risk factor for alcoholic steatohepatitis (ASH). Previous studies have shown that direct injury of hepatocytes is the key factor in its occurrence and development. However, our study shows that the role of Kupffer cells in ASH cannot be ignored. We isolated Kupffer cells from the livers of ASH mice and found that alcohol consumption induced Kupffer cell pyroptosis and increased the release of interleukin-1ß (IL-1ß). Furthermore, we screened the related m6A enzyme methyltransferase-like 3 (METTL3) from liver Kupffer cells, and found that silencing METTL3 alleviated inflammatory cytokine eruption by Kupffer cell pyroptosis in ASH mice. In vitro, we silenced METTL3 with lentivirus in BMDMs and RAW264.7 cells and confirmed that METTL3 could reduce pyroptosis by influencing the splicing of pri-miR-34A. Together, our results revealed a critical role of KC pyroptosis in ASH and highlighted the mechanism by which METLL3 relieves cell pyroptosis, which could be a promising therapeutic strategy for ASH.


Subject(s)
Fatty Liver, Alcoholic , MicroRNAs , Animals , Mice , Kupffer Cells , Pyroptosis , Hepatocytes , Methyltransferases
11.
J Org Chem ; 89(9): 6474-6488, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38607334

ABSTRACT

We report a step-economic strategy for the direct synthesis of spiro polycyclic N-heterocycles and indolecarbazole-fused naphthoquinones by merging oxidative coupling and cascade palladium-catalyzed intramolecular oxidative cyclization. In the protocol, bi-indolylnaphthoquinones were first synthesized by oxidative coupling of indoles and naphthoquinones. Subsequent cascade palladium-catalyzed intramolecular oxidative cyclization of bi-indolylnaphthoquinones gave spiro polycyclic N-heterocycles and indolecarbazoles. The intramolecular oxidative cyclization approach could also be realized by the presence or absence of iron catalysts under standard conditions. This protocol is featured with moderate to excellent yields, a wide substrate scope, and divergent structures of products.

12.
Pharm Res ; 2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39496990

ABSTRACT

Embedded within the field of drug metabolism and pharmacokinetics (DMPK), biotransformation is a discipline that studies the origins, disposition, and structural identity of metabolites to provide a comprehensive safety assessment, including the assessment of exposure coverage in toxicological species. Spanning discovery and development, metabolite identification (metID) scientists employ various strategies and tools to address stage-specific questions aimed at guiding the maturation of early chemical matter into drug candidates. During this process, the identity of major (and minor) circulating human metabolites is ascertained to comply with the regulatory requirements such as the Metabolites in Safety Testing (MIST) guidance. Through the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), the "Translatability of MetID In Vitro Systems Working Group" was created within the Translational and ADME Sciences Leadership Group. The remit of this group was to objectively determine how accurate commonly employed in vitro systems have been with respect to prediction of circulating human metabolites, both qualitatively and quantitatively. A survey composed of 34 questions was conducted across 26 pharmaceutical companies to obtain a foundational understanding of current metID practices, preclinically and clinically, as well as to provide perspective on how successful these practices have been at predicting circulating human metabolites. The results of this survey are presented as an initial snapshot of current industry-based metID practices, including our perspective on how a harmonized framework for the conduct of in vitro metID studies could be established. Future perspectives from current practices to emerging advances with greater translational capability are also provided.

13.
Mol Biol Rep ; 51(1): 385, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438773

ABSTRACT

BACKGROUND: Glioblastoma, a highly aggressive form of brain cancer, poses significant challenges due to its resistance to therapy and high recurrence rates. This study aimed to investigate the expression and functional implications of CDKN2A, a key tumor suppressor gene, in glioblastoma cells, building upon the existing background of knowledge in this field. METHOD: Quantitative reverse transcription PCR (qRT-PCR) analysis was performed to evaluate CDKN2A expression in U87 glioblastoma cells compared to normal human astrocytes (NHA). CDKN2A expression levels were manipulated using small interfering RNA (siRNA) and CDKN2A overexpression vector. Cell viability assays and carmustine sensitivity tests were conducted to assess the impact of CDKN2A modulation on glioblastoma cell viability and drug response. Sphere formation assays and western blot analysis were performed to investigate the role of CDKN2A in glioblastoma stem cell (GSC) self-renewal and pluripotency marker expression. Additionally, methylation-specific PCR (MSP) assays and demethylation treatment were employed to elucidate the mechanism of CDKN2A downregulation in U87 cells. RESULT: CDKN2A expression was significantly reduced in glioblastoma cells compared to NHA. CDKN2A overexpression resulted in decreased cell viability and enhanced sensitivity to carmustine treatment. CDKN2A inhibition promoted self-renewal capacity and increased pluripotency marker expression in U87 cells. CDKN2A upregulation led to elevated protein levels of p16INK4a, p14ARF, P53, and P21, which are involved in cell cycle regulation. CDKN2A downregulation in U87 cells was associated with high promoter methylation, which was reversed by treatment with a demethylating agent. CONCLUSION: Our findings demonstrate that CDKN2A downregulation in glioblastoma cells is associated with decreased cell viability, enhanced drug resistance, increased self-renewal capacity, and altered expression of pluripotency markers. The observed CDKN2A expression changes are mediated by promoter methylation. These results highlight the potential role of CDKN2A as a therapeutic target and prognostic marker in glioblastoma.


Subject(s)
Carmustine , Glioblastoma , Humans , Carmustine/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Stem Cells , Genes, p16 , Methylation , Cyclin-Dependent Kinase Inhibitor p16/genetics
14.
Nano Lett ; 23(12): 5467-5474, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37283534

ABSTRACT

Phase engineering of Pt-based intermetallic catalysts has been demonstrated as a promising strategy to optimize catalytic properties for a direct formic acid fuel cell. Pt-Bi intermetallic catalysts are attracting increasing interest due to their high catalytic activity, especially for inhibiting CO poisoning. However, the phase transformation and synthesis of intermetallic compounds usually occurring at high temperatures leads to a lack of control of the size and composition. Here, we report the synthesis of intermetallic ß-PtBi2 and γ-PtBi2 two-dimensional nanoplates with controlled sizes and compositions under mild conditions. The different phases of intermetallic PtBi2 can significantly affect the catalytic performance of the formic acid oxidation reaction (FAOR). The obtained ß-PtBi2 nanoplates exhibit an excellent mass activity of 1.1 ± 0.01 A mgPt-1 for the FAOR, which is 30-fold higher than that of commercial Pt/C catalysts. Moreover, intermetallic PtBi2 demonstrates high tolerance to CO poisoning, as confirmed by in situ infrared absorption spectroscopy.

15.
Pak J Med Sci ; 40(6): 1087-1092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952500

ABSTRACT

Objective: To investigate the effects of motivational interview education on psychological status, compliance behavior and quality of life in patients with malignant tumors combined with diabetes mellitus. Methods: This is a retrospective study. Eighty patients with malignant tumors combined with diabetes mellitus admitted at The Fourth Hospital of Hebei Medical University from January 2021 to June 2022 were included as subjects and divided into observation group and control group according to the intervention measures. Patients in the control group were given routine health education intervention, while those in the observation group were given motivational interviewing intervention on the basis of the control group. We compared the prognosis, cognitive function, quality of life, relief of cancer pain before intervention and three months after the intervention of the two groups were compared. Results: At three months after the intervention, the total remission rate of cancer pain in the observation group was higher than that in the control group(p<0.05), while the levels of FBG and 2hPG in the observation group were significantly lower than those in the control group(p<0.05). Self-Rating Anxiety Scale(SAS) and Self-rating depression scale(SDS) scores decreased in both groups three months after the intervention, with the level of reduction in the observation group being higher than that in the control group(p<0.05). The overall compliance was higher in the observation group than in the control group(p<0.05). Conclusion: Motivational interviewing leads to alleviate negative emotions, improve the psychological status, enhance compliance behavior and improve quality of life in patients with malignant tumors combined with diabetes mellitus.

16.
Angew Chem Int Ed Engl ; 63(33): e202407240, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38839564

ABSTRACT

One-step purification of ethylene from ternary mixtures (C2H2, C2H4, and C2H6) can greatly reduce the energy consumption of the separation process, but it is extremely challenging. Herein, we use crystal engineering and reticular chemistry to introduce unsaturated bonds (ethynyl and alkyne) into ligands, and successfully design and synthesized two novel Zr-MOCs (ZrT-1-ethenyl and ZrT-1-alkyne). The introduction of carbon-carbon unsaturated bonds provides abundant adsorption sites within the framework while modulating the pore window size. Comprehensive characterization techniques including single crystal and powder X-ray diffraction, as well as electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) confirm that ZrT-1-ethenyl and ZrT-1-alkyne possess an isostructural framework with ZrT-1 and ZrT-1-Me, respectively. Adsorption isotherms and breakthrough experiments combined with theoretical calculations demonstrate that ZrT-1-ethenyl can effectively remove trace C2H2 and C2H6 in C2H4 and achieve separation of C2H2 from C2H4 and CO2. ZrT-1-ethenyl can also directly purify C2H4 in liquid solutions. This work provides a benchmark for MOCs that one-step purification of ethylene from ternary mixtures.

17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 723-729, 2024 Jul 15.
Article in Zh | MEDLINE | ID: mdl-39014949

ABSTRACT

OBJECTIVES: To explore the diagnostic efficacy of serum 14-3-3ß protein combined with fractional exhaled nitric oxide (FeNO) and conventional ventilatory lung function parameters in diagnosing bronchial asthma (referred to as "asthma") in children. METHODS: A prospective study included 136 children initially diagnosed with asthma during an acute episode as the asthma group, and 85 healthy children undergoing routine health checks as the control group. The study compared the differences in serum 14-3-3ß protein concentrations between the two groups, analyzed the correlation of serum 14-3-3ß protein with clinical indices, and evaluated the diagnostic efficacy of combining 14-3-3ß protein, FeNO, and conventional ventilatory lung function parameters for asthma in children. RESULTS: The concentration of serum 14-3-3ß protein was higher in the asthma group than in the control group (P<0.001). Serum 14-3-3ß protein showed a positive correlation with the percentage of neutrophils and total serum immunoglobulin E, and a negative correlation with conventional ventilatory lung function parameters (P<0.05). Cross-validation of combined indices showed that the combination of 14-3-3ß protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume had an area under the curve of 0.948 for predicting asthma, with a sensitivity and specificity of 88.9% and 93.7%, respectively, demonstrating good diagnostic efficacy (P<0.001). The model had the best extrapolation. CONCLUSIONS: The combination of serum 14-3-3ß protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume can significantly improve the diagnostic efficacy for asthma in children. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 723-729.


Subject(s)
14-3-3 Proteins , Asthma , Nitric Oxide , Humans , Asthma/diagnosis , Asthma/blood , Asthma/physiopathology , Male , Female , Child , 14-3-3 Proteins/blood , Nitric Oxide/analysis , Nitric Oxide/blood , Child, Preschool , Prospective Studies , Respiratory Function Tests , Fractional Exhaled Nitric Oxide Testing , Adolescent , Breath Tests
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 611-618, 2024 Jun 15.
Article in Zh | MEDLINE | ID: mdl-38926378

ABSTRACT

OBJECTIVES: To investigate the risk factors for bronchopulmonary dysplasia (BPD) in twin preterm infants with a gestational age of <34 weeks, and to provide a basis for early identification of BPD in twin preterm infants in clinical practice. METHODS: A retrospective analysis was performed for the twin preterm infants with a gestational age of <34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020. According to their conditions, they were divided into group A (both twins had BPD), group B (only one twin had BPD), and group C (neither twin had BPD). The risk factors for BPD in twin preterm infants were analyzed. Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins. RESULTS: A total of 904 pairs of twins with a gestational age of <34 weeks were included in this study. The multivariate logistic regression analysis showed that compared with group C, birth weight discordance of >25% between the twins was an independent risk factor for BPD in one of the twins (OR=3.370, 95%CI: 1.500-7.568, P<0.05), and high gestational age at birth was a protective factor against BPD (P<0.05). The conditional logistic regression analysis of group B showed that small-for-gestational-age (SGA) birth was an independent risk factor for BPD in individual twins (OR=5.017, 95%CI: 1.040-24.190, P<0.05). CONCLUSIONS: The development of BPD in twin preterm infants is associated with gestational age, birth weight discordance between the twins, and SGA birth.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature , Twins , Humans , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/epidemiology , Risk Factors , Infant, Newborn , Female , Retrospective Studies , Male , Gestational Age , Birth Weight , Logistic Models
19.
BMC Genomics ; 24(1): 626, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864214

ABSTRACT

BACKGROUND: Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS: A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS: More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION: The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.


Subject(s)
Capsicum , Phytophthora , Piper nigrum , Transcriptome , Phytophthora/physiology , Piper nigrum/genetics , Metabolome , Flavonoids , Plant Diseases/genetics
20.
Antimicrob Agents Chemother ; 67(1): e0134822, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36519892

ABSTRACT

The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification"). Here, we describe GS-SBA-1, a capsid assembly modulator (CAM) belonging to class CAM-E, that demonstrates potent inhibition of extracellular HBV DNA in vitro (EC50 [50% effective concentration] = 19 nM) in HBV-infected primary human hepatocytes (PHHs) as well as in vivo in an HBV-infected immunodeficient mouse model. GS-SBA-1 has comparable activities across HBV genotypes and nucleos(t)ide-resistant mutants in HBV-infected PHHs. In addition, GS-SBA-1 demonstrated in vitro additivity in combination with tenofovir alafenamide (TAF). The administration of GS-SBA-1 to PHHs at the time of infection prevents covalently closed circular DNA (cccDNA) formation and, hence, decreases HBV RNA and antigen levels (EC50 = 80 to 200 nM). Furthermore, GS-SBA-1 prevents the production of extracellular HBV RNA-containing viral particles in vitro. Collectively, these data demonstrate that GS-SBA-1 is a potent CAM that has the potential to enhance viral suppression in combination with an NA.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Animals , Mice , Humans , Hepatitis B, Chronic/drug therapy , Capsid , Hepatitis B virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Capsid Proteins/genetics , RNA , DNA, Viral/genetics , DNA, Circular , Hepatitis B/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL