Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Haematologica ; 107(1): 243-259, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33327716

ABSTRACT

In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which ß1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.


Subject(s)
Induced Pluripotent Stem Cells , Tubulin , Blood Platelets/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Protein Processing, Post-Translational , Thrombopoiesis , Tubulin/genetics , Tubulin/metabolism
2.
J Biol Chem ; 295(21): 7516-7528, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32241912

ABSTRACT

The ATPase SecA is an essential component of the bacterial Sec machinery, which transports proteins across the cytoplasmic membrane. Most SecA proteins contain a long C-terminal tail (CTT). In Escherichia coli, the CTT contains a structurally flexible linker domain and a small metal-binding domain (MBD). The MBD coordinates zinc via a conserved cysteine-containing motif and binds to SecB and ribosomes. In this study, we screened a high-density transposon library for mutants that affect the susceptibility of E. coli to sodium azide, which inhibits SecA-mediated translocation. Results from sequencing this library suggested that mutations removing the CTT make E. coli less susceptible to sodium azide at subinhibitory concentrations. Copurification experiments suggested that the MBD binds to iron and that azide disrupts iron binding. Azide also disrupted binding of SecA to membranes. Two other E. coli proteins that contain SecA-like MBDs, YecA and YchJ, also copurified with iron, and NMR spectroscopy experiments indicated that YecA binds iron via its MBD. Competition experiments and equilibrium binding measurements indicated that the SecA MBD binds preferentially to iron and that a conserved serine is required for this specificity. Finally, structural modeling suggested a plausible model for the octahedral coordination of iron. Taken together, our results suggest that SecA-like MBDs likely bind to iron in vivo.


Subject(s)
Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Iron/metabolism , SecA Proteins/metabolism , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Mutation , Protein Binding , Protein Domains , SecA Proteins/genetics , Sodium Azide/pharmacology
4.
Sci Rep ; 9(1): 14219, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578415

ABSTRACT

The use of CRISPR-Cas9 genome editing to introduce endogenously expressed tags has the potential to address a number of the classical limitations of single molecule localisation microscopy. In this work we present the first systematic comparison of inserts introduced through CRISPR-knock in, with the aim of optimising this approach for single molecule imaging. We show that more highly monomeric and codon optimised variants of mEos result in improved expression at the TubA1B locus, despite the use of identical guides, homology templates, and selection strategies. We apply this approach to target the G protein-coupled receptor (GPCR) CXCR4 and show a further insert dependent effect on expression and protein function. Finally, we show that compared to over-expressed CXCR4, endogenously labelled samples allow for accurate single molecule quantification on ligand treatment. This suggests that despite the complications evident in CRISPR mediated labelling, the development of CRISPR-PALM has substantial quantitative benefits.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Gene Knock-In Techniques/methods , Luminescent Proteins/genetics , Single Molecule Imaging/methods , Cell Line , Clone Cells , Codon/genetics , Humans , Ligands , Luminescent Proteins/analysis , Mutagenesis, Insertional , Receptors, CXCR4/biosynthesis , Receptors, CXCR4/genetics , Tubulin/biosynthesis , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL