Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 164(3): 550-63, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824661

ABSTRACT

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Transcriptome , Adult , Brain Neoplasms/metabolism , Cell Proliferation , Cluster Analysis , DNA Helicases/genetics , DNA Methylation , Epigenesis, Genetic , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Middle Aged , Mutation , Nuclear Proteins/genetics , Promoter Regions, Genetic , Signal Transduction , Telomerase/genetics , Telomere , X-linked Nuclear Protein
3.
Genes Dev ; 27(13): 1462-72, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23796897

ABSTRACT

With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas to relate chromosomal alterations to imbalances in DNA dosage and describe the landscape of intragenic breakpoints in glioblastoma multiforme (GBM). Gene length, guanine-cytosine (GC) content, and local presence of a copy number alteration were closely associated with breakpoint susceptibility. A dense pattern of repeated focal amplifications involving the murine double minute 2 (MDM2)/cyclin-dependent kinase 4 (CDK4) oncogenes and associated with poor survival was identified in 5% of GBMs. Gene fusions and rearrangements were detected concomitant within the breakpoint-enriched region. At the gene level, we noted recurrent breakpoints in genes such as apoptosis regulator FAF1. Structural alterations of the FAF1 gene disrupted expression and led to protein depletion. Restoration of the FAF1 protein in glioma cell lines significantly increased the FAS-mediated apoptosis response. Our study uncovered a previously underappreciated genomic mechanism of gene deregulation that can confer growth advantages on tumor cells and may generate cancer-specific vulnerabilities in subsets of GBM.


Subject(s)
Chromosome Breakage , Glioblastoma/genetics , Glioblastoma/mortality , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , DNA Copy Number Variations/genetics , Gene Fusion/genetics , Gene Rearrangement/genetics , Genomic Instability/genetics , Glioblastoma/pathology , Intracellular Signaling Peptides and Proteins , Mice , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Survival Analysis
4.
J Neurooncol ; 146(1): 79-89, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776899

ABSTRACT

PURPOSE: To estimate the maximum tolerated dose (MTD) and/or identify the recommended Phase II dose (RP2D) for combined INC280 and buparlisib in patients with recurrent glioblastoma with homozygous phosphatase and tensin homolog (PTEN) deletion, mutation or protein loss. METHODS: This multicenter, open-label, Phase Ib/II study included adult patients with glioblastoma with mesenchymal-epithelial transcription factor (c-Met) amplification. In Phase Ib, patients received INC280 as capsules or tablets in combination with buparlisib. In Phase II, patients received INC280 only. Response was assessed centrally using Response Assessment in Neuro-Oncology response criteria for high-grade gliomas. All adverse events (AEs) were recorded and graded. RESULTS: 33 patients entered Phase Ib, 32 with altered PTEN. RP2D was not declared due to potential drug-drug interactions, which may have resulted in lack of efficacy; thus, Phase II, including 10 patients, was continued with INC280 monotherapy only. Best response was stable disease in 30% of patients. In the selected patient population, enrollment was halted due to limited activity with INC280 monotherapy. In Phase Ib, the most common treatment-related AEs were fatigue (36.4%), nausea (30.3%) and increased alanine aminotransferase (30.3%). MTD was identified at INC280 Tab 300 mg twice daily + buparlisib 80 mg once daily. In Phase II, the most common AEs were headache (40.0%), constipation (30.0%), fatigue (30.0%) and increased lipase (30.0%). CONCLUSION: The combination of INC280/buparlisib resulted in no clear activity in patients with recurrent PTEN-deficient glioblastoma. More stringent molecular selection strategies might produce better outcomes. TRIAL REGISTRATION: NCT01870726.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Aminopyridines/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Benzamides , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Female , Follow-Up Studies , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Imidazoles/administration & dosage , Male , Maximum Tolerated Dose , Middle Aged , Morpholines/administration & dosage , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , PTEN Phosphohydrolase/genetics , Prognosis , Proto-Oncogene Proteins c-met/genetics , Tissue Distribution , Triazines/administration & dosage
5.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396284

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood-brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma's treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome-namely, the blood-brain barrier, tumoral heterogeneity, and microenvironment-and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Molecular Targeted Therapy , Tumor Microenvironment/drug effects , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Humans
6.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26061751

ABSTRACT

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Subject(s)
DNA, Neoplasm/analysis , Genes, p53 , Glioma/genetics , Mutation , Adolescent , Adult , Aged , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Cluster Analysis , Female , Glioblastoma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Proportional Hazards Models , Sequence Analysis, DNA , Signal Transduction
7.
J Neurooncol ; 136(1): 79-86, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28988377

ABSTRACT

Recurrent glioblastoma (GBM) has a very low 6-month progression free survival (PFS) with currently available treatments. Combination chemotherapy to target multiple cell signaling pathways is currently being investigated in order to improve prognosis for recurrent disease. The purpose of this phase I study was to determine the maximum tolerated dose (MTD) for the combination of tipifarnib and sorafenib for the treatment of recurrent GBM. Patients with pathologically proven WHO grade IV GBM and radiographically proven tumor recurrence were eligible for this study. Treatments included sorafenib at twice daily and escalating dosages of tipifarnib. Dose-limiting toxicity (DLT) was determined over the first 28-days of treatments, and the MTD was determined in a 3 + 3 study design. We enrolled 24 patients, and 21 patients completed the MTD period. The study was stopped early with no MTD determination for excessive toxicities. The last dose level reached was sorafenib at 200 mg twice a day and tipifarnib 100 mg twice a day on an alternating week schedule. The DLTs included diarrhea, lipase elevation, hypophosphatemia, and arthralgia. The combination of sorafenib and tipifarnib has excessive toxicities and full single agent dosages could not be achieved in combination.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Quinolones/therapeutic use , Sorafenib/therapeutic use , Adult , Aged , Antineoplastic Agents/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Humans , Male , Maximum Tolerated Dose , Middle Aged , Quinolones/pharmacokinetics , Sorafenib/pharmacokinetics , Treatment Outcome
8.
J Neurooncol ; 137(1): 39-47, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29404979

ABSTRACT

From 1990 to 1994, patients with newly diagnosed malignant gliomas were enrolled and randomized between hyperfractionated radiation (HFX) of 72.0 Gy in 60 fractions given twice daily and 60.0 Gy in 30 fractions given once daily. All patients received 80 mg/m2 of 1,3 bis(2 chloroethyl)-1 nitrosourea on days 1-3 q8 weeks for 1 year. Patients were stratified by age, KPS, and histology. The primary endpoint was overall survival (OS), with secondary endpoints including progression-free survival (PFS) and toxicity. Out of the 712 patients accrued, 694 (97.5%) were analyzable cases (350 HFX, 344 standard arm). There was no significant difference between the arms on overall acute or late treatment-related toxicity. No statistically significant effect for HFX, as compared to standard therapy, was found on either OS, with a median survival time (MST) of 11.3 versus 13.1 months (p = 0.20) or PFS, with a median PFS time of 5.7 versus 6.9 months (p = 0.18). The treatment effect on OS remained insignificant based on the multivariate analysis (hazard ratio 1.16; p = 0.0682). When OS was analyzed by histology subgroup there was also no significant difference between the two arms for patients with glioblastoma multiforme (MST: 10.3 vs. 11.2 months; p = 0.34), anaplastic astrocytoma (MST: 69.8 vs. 50.0 months; p = 0.91) or anaplastic oligodendroglioma (MST: 92.1 vs. 66.5 months; p = 0.33). Though this trial provided many invaluable secondary analyses, there was no trend or indication of a benefit to HFX radiation to 72.0 Gy in any subset of malignant glioma patients.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Carmustine/therapeutic use , Dose Fractionation, Radiation , Glioma/drug therapy , Glioma/radiotherapy , Adolescent , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Female , Humans , Male , Middle Aged , Survival Analysis , Treatment Outcome , Young Adult
9.
Proc Natl Acad Sci U S A ; 112(11): 3421-6, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25737557

ABSTRACT

Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.


Subject(s)
Brain Neoplasms/genetics , DNA Repair/genetics , Disease Progression , Gene Amplification , Genome, Human , Glioma/genetics , Proto-Oncogene Proteins c-akt/genetics , Animals , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage/genetics , DNA Repair/drug effects , DNA Repair/radiation effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/radiation effects , Gene Amplification/drug effects , Gene Amplification/radiation effects , Gene Expression Regulation, Neoplastic , Glioma/enzymology , Glioma/pathology , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Radiation Tolerance/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Temozolomide , Transcription, Genetic
10.
J Neurooncol ; 129(3): 487-494, 2016 09.
Article in English | MEDLINE | ID: mdl-27406589

ABSTRACT

Antiangiogenic therapy can rapidly reduce vascular permeability and cerebral edema but high doses of bevacizumab may induce selective pressure to promote resistance. This trial evaluated the efficacy of low dose bevacizumab in combination with lomustine (CCNU) compared to standard dose bevacizumab in patients with recurrent glioblastoma. Patients (N = 71) with recurrent glioblastoma who previously received radiation and temozolomide were randomly assigned 1:1 to receive bevacizumab monotherapy (10 mg/kg) or low dose bevacizumab (5 mg/kg) in combination with lomustine (90 mg/m(2)). The primary end point was progression-free survival (PFS) based on a blinded, independent radiographic assessment of post-contrast T1-weighted and non-contrast T2/FLAIR weighted magnetic resonance imaging (MRI) using RANO criteria. For 69 evaluable patients, median PFS was not significantly longer in the low dose bevacizumab + lomustine arm (4.34 months, CI 2.96-8.34) compared to the bevacizumab alone arm (4.11 months, CI 2.69-5.55, p = 0.19). In patients with first recurrence, there was a trend towards longer median PFS time in the low dose bevacizumab + lomustine arm (4.96 months, CI 4.17-13.44) compared to the bevacizumab alone arm (3.22 months CI 2.5-6.01, p = 0.08). The combination of low dose bevacizumab plus lomustine was not superior to standard dose bevacizumab in patients with recurrent glioblastoma. Although the study was not designed to exclusively evaluate patients at first recurrence, a strong trend towards improved PFS was seen in that subgroup for the combination of low dose bevacizumab plus lomustine. Further studies are needed to better identify such subgroups that may most benefit from the combination treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Lomustine/therapeutic use , Adult , Aged , Brain Neoplasms/mortality , Dose-Response Relationship, Drug , Female , Glioblastoma/mortality , Humans , Karnofsky Performance Status , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Treatment Outcome
11.
Acta Neuropathol ; 130(4): 587-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26323991

ABSTRACT

Ten to twenty percent of newly diagnosed glioblastoma (GBM) patients initially present with multiple lesions, termed multifocal or multicentric GBM (M-GBM). The prognosis of these patients is poorer than that of solitary GBM (S-GBM) patients. However, it is unknown whether multifocality has a genetic, epigenetic, or molecular basis. Here, we identified the genetic and epigenetic characteristics of M-GBM by performing a comprehensive analysis of multidimensional data, including imaging, genetic, epigenetic, and gene expression profiles, from 30 M-GBM cases in The Cancer Genome Atlas database and comparing the results with those of 173 S-GBM cases. We found that M-GBMs had no IDH1, ATRX, or PDGFRA mutations and were significantly associated with the mesenchymal subtype. We also identified the CYB5R2 gene to be hypo-methylated and overexpressed in M-GBMs. The expression level of CYB5R2 was significantly associated with patient survival in two major independent GBM cohorts, totaling 758 cases. The IDH1 mutation was markedly associated with CYB5R2 promoter methylation, but the survival influence of CYB5R2 was independent of IDH1 mutation status. CYB5R2 expression was significantly associated with collagen maturation and the catabolic process and immunoregulation pathways. These results reveal that M-GBMs have some underlying genetic and epigenetic characteristics that are associated with poor prognosis and that CYB5R2 is a new epigenetic marker for GBM prognosis.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Epigenesis, Genetic , Glioblastoma/genetics , Glioblastoma/metabolism , Mutation , Brain/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Cohort Studies , DNA Helicases/genetics , DNA Methylation , Databases, Factual , Female , Gene Expression Profiling , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Nuclear Proteins/genetics , Prognosis , Promoter Regions, Genetic , Survival Analysis , X-linked Nuclear Protein
12.
Stem Cells ; 32(1): 301-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24038660

ABSTRACT

Genomic, transcriptional, and proteomic analyses of brain tumors reveal subtypes that differ in pathway activity, progression, and response to therapy. However, a number of small molecule inhibitors under development vary in strength of subset and pathway-specificity, with molecularly targeted experimental agents tending toward stronger specificity. The Notch signaling pathway is an evolutionarily conserved pathway that plays an important role in multiple cellular and developmental processes. We investigated the effects of Notch pathway inhibition in glioma tumor-initiating cell (GIC, hereafter GIC) populations using γ secretase inhibitors. Drug cytotoxicity testing of 16 GICs showed differential growth responses to the inhibitors, stratifying GICs into responders and nonresponders. Responder GICs had an enriched proneural gene signature in comparison to nonresponders. Also gene set enrichment analysis revealed 17 genes set representing active Notch signaling components NOTCH1, NOTCH3, HES1, MAML1, DLL-3, JAG2, and so on, enriched in responder group. Analysis of The Cancer Genome Atlas expression dataset identified a group (43.9%) of tumors with proneural signature showing high Notch pathway activation suggesting γ secretase inhibitors might be of potential value to treat that particular group of proneural glioblastoma (GBM). Inhibition of Notch pathway by γ secretase inhibitor treatment attenuated proliferation and self-renewal of responder GICs and induces both neuronal and astrocytic differentiation. In vivo evaluation demonstrated prolongation of median survival in an intracranial mouse model. Our results suggest that proneural GBM characterized by high Notch pathway activation may exhibit greater sensitivity to γ secretase inhibitor treatment, holding a promise to improve the efficiency of current glioma therapy.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neoplastic Stem Cells/drug effects , Receptors, Notch/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protease Inhibitors , Receptors, Notch/genetics , Signal Transduction , Xenograft Model Antitumor Assays
13.
J Neurooncol ; 119(1): 135-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24803001

ABSTRACT

Bevacizumab (BEV) is widely used for treatment of patients with recurrent glioblastoma. It is not known if there are differences in outcome between early versus delayed BEV treatment of recurrent glioblastoma. We examined the relationship between the time of starting BEV treatment and outcomes in patients with recurrent glioblastoma. In this retrospective chart review, we identified patients with recurrent glioblastoma diagnosed between 2005 and 2011 who were treated with BEV alone or BEV-containing regimens. Data was analyzed to determine overall survival (OS) from time of diagnosis and progression free survival (PFS) from time of starting BEV. A total of 298 patients were identified, 112 patients received early BEV, 133 patients received delayed BEV, and 53 patients were excluded because they either progressed within 3 months of radiation or received BEV at the time of diagnosis. There was no significant difference in PFS between patients that received early BEV and those that received delayed BEV (5.2 vs. 4.3 months, p = 0.2). Patients treated with delayed BEV had longer OS when compared to those treated with early BEV (25.9 vs. 20.8 months, p = 0.005). In patients with recurrent glioblastoma, there was no significant difference in PFS from the time of starting BEV between early and delayed BEV. Although patients treated with delayed BEV seemed to have longer OS, a conclusion regarding OS outcome requires further prospective trials. These results may indicate that delaying treatment with BEV is not detrimental for survival of patients with recurrent glioblastoma.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Angiogenesis Inhibitors/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Bevacizumab , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Disease-Free Survival , Female , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Prognosis , Retrospective Studies , Survival Rate , Time Factors , Treatment Outcome
14.
Cancer ; 119(15): 2747-53, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23633392

ABSTRACT

BACKGROUND: Lonafarnib is an oral selective farnesyltransferase inhibitor, a class of drugs which have shown activity in preclinical glioma models. Temozolomide (TMZ) is an alkylating agent that is the first-line chemotherapy for glioblastoma. METHODS: The current study combined the cytotoxic agent TMZ with the cytostatic agent lonafarnib for patients with recurrent glioblastoma to establish a maximum tolerated dose (MTD) of the combination and its preliminary efficacy. Three dose cohorts of lonafarnib were studied in the phase 1 component of the trial (100 mg twice daily [bid], 150 mg bid, and 200 bid) with dose-dense schedule of TMZ (150 mg/m² daily) administered in an alternating weekly schedule. After establishing the MTD of lonafarnib, a subsequent expansion phase 1b was undertaken to evaluate efficacy, primarily measured by 6-month progression-free survival (PFS-6). RESULTS: Fifteen patients were enrolled into the phase 1 component and 20 patients into the phase 1b component. The MTD of lonafarnib in combination with TMZ was 200 mg bid. Among the patients enrolled into the study, 34 were eligible for 6-month progression evaluation and 35 patients were evaluable for time-to-progression analysis. The PFS-6 rate was 38% (95% confidence interval [CI] = 22%, 56%) and the median PFS was 3.9 months (95% CI = 2.5, 8.4). The median disease-specific survival was 13.7 months (95% CI = 8.9, 22.1). Hematologic toxicities, particularly lymphopenia, were the most common grade 3 and 4 adverse events. There were no treatment-related deaths. CONCLUSIONS: These results demonstrate that TMZ can be safely combined with a farnesyltransferase inhibitor and that this regimen is active, although the current study cannot determine the relative contributions of the 2 agents or the contribution of the novel administration schedule.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Glioblastoma/drug therapy , Supratentorial Neoplasms/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Dacarbazine/analogs & derivatives , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Piperidines/administration & dosage , Piperidines/adverse effects , Pyridines/administration & dosage , Pyridines/adverse effects , Temozolomide
15.
J Neurooncol ; 111(1): 33-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23086432

ABSTRACT

The Radiation Therapy Oncology Group (RTOG) initiated the single-arm, phase II study 9806 to determine the safety and efficacy of daily thalidomide with radiation therapy in patients with newly diagnosed glioblastoma. Patients were treated with thalidomide (200 mg daily) from day one of radiation therapy, increasing by 100-200 to 1,200 mg every 1-2 weeks until tumor progression or unacceptable toxicity. The median survival time (MST) of all 89 evaluable patients was 10 months. When compared with the historical database stratified by recursive partitioning analysis (RPA) class, this end point was not different [hazard ratio (HR) = 1.18; 95 % CI: 0.95-1.46; P = 0.93]. The MST of RPA class III and IV patients was 13.9 versus 12.5 months in controls (HR = 0.99; 95 % CI: 0.73-1.36; P = 0.48), and 4.3 versus 8.6 months in RPA class V controls (HR = 1.63, 95 % CI: 1.17-2.27; P = 0.99). In all, 34 % of patients discontinued thalidomide because of adverse events or refusal. The most common grade 3-4 toxicities were venous thrombosis, fatigue, skin reactions, encephalopathy, and neuropathy. In conclusion, thalidomide given simultaneously with radiation therapy was safe, but did not improve survival in patients with newly diagnosed glioblastoma.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Brain Neoplasms/therapy , Chemoradiotherapy , Glioblastoma/therapy , Neoplasm Recurrence, Local/therapy , Thalidomide/therapeutic use , Adolescent , Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/mortality , Female , Follow-Up Studies , Glioblastoma/diagnosis , Glioblastoma/mortality , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/mortality , Prognosis , Radiotherapy Dosage , Survival Rate , Young Adult
16.
J Clin Oncol ; 41(32): 4945-4952, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37935104

ABSTRACT

PURPOSE: We evaluated the efficacy of bevacizumab, alone and in combination with irinotecan, in patients with recurrent glioblastoma in a phase II, multicenter, open-label, noncomparative trial. PATIENTS AND METHODS: One hundred sixty-seven patients were randomly assigned to receive bevacizumab 10 mg/kg alone or in combination with irinotecan 340 mg/m2 or 125 mg/m2 (with or without concomitant enzyme-inducing antiepileptic drugs, respectively) once every 2 weeks. Primary end points were 6-month progression-free survival and objective response rate, as determined by independent radiology review. Secondary end points included safety and overall survival. RESULTS: In the bevacizumab-alone and the bevacizumab-plus-irinotecan groups, estimated 6-month progression-free survival rates were 42.6% and 50.3%, respectively; objective response rates were 28.2% and 37.8%, respectively; and median overall survival times were 9.2 months and 8.7 months, respectively. There was a trend for patients who were taking corticosteroids at baseline to take stable or decreasing doses over time. Of the patients treated with bevacizumab alone or bevacizumab plus irinotecan, 46.4% and 65.8%, respectively, experienced grade ≥ 3 adverse events, the most common of which were hypertension (8.3%) and convulsion (6.0%) in the bevacizumab-alone group and convulsion (13.9%), neutropenia (8.9%), and fatigue (8.9%) in the bevacizumab-plus-irinotecan group. Intracranial hemorrhage was noted in two patients (2.4%) in the bevacizumab-alone group (grade 1) and in three patients (3.8%) patients in the bevacizumab-plus-irinotecan group (grades 1, 2, and 4, respectively). CONCLUSION: Bevacizumab, alone or in combination with irinotecan, was well tolerated and active in recurrent glioblastoma.

17.
Neurooncol Adv ; 5(1): vdad132, 2023.
Article in English | MEDLINE | ID: mdl-38130900

ABSTRACT

Background: Epidermal growth factor receptor (EGFR) amplification is found in nearly 40%-50% of glioblastoma cases. Several EGFR inhibitors have been tested in glioblastoma but have failed to demonstrate long-term therapeutic benefit, presumably because of acquired resistance. Targeting EGFR downstream signaling with mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) inhibitors would be a more effective approach to glioblastoma treatment. We tested the therapeutic potential of MEK1/2 inhibitors in glioblastoma using 3D cultures of glioma stem-like cells (GSCs) and mouse models of glioblastoma. Methods: Several MEK inhibitors were screened in an unbiased high-throughput platform using GSCs. Cell death was evaluated using flow cytometry and Western blotting (WB) analysis. RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and WB analysis were used to identify and validate neuronal differentiation. Results: Unbiased screening of multiple MEK inhibitors in GSCs showed antiproliferative and apoptotic cell death in sensitive cell lines. An RNA-seq analysis of cells treated with trametinib, a potent MEK inhibitor, revealed upregulation of neurogenesis and neuronal differentiation genes, such as achaete-scute homolog 1 (ASCL1), delta-like 3 (DLL3), and neurogenic differentiation 4 (NeuroD4). We validated the neuronal differentiation phenotypes in vitro and in vivo using selected differentiation markers (ß-III-tubulin, ASCL1, DLL3, and NeuroD4). Oral treatment with trametinib in an orthotopic GSC xenograft model significantly improved animal survival, with 25%-30% of mice being long-term survivors. Conclusions: Our findings demonstrated that MEK1/2 inhibition promotes neuronal differentiation in glioblastoma, a potential additional mechanism of action of MEK1/2 inhibitors. Thus, MEK inhibitors could be efficacious in glioblastoma patients with activated EGFR/MAPK signaling.

18.
Cancer ; 118(14): 3599-606, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22086614

ABSTRACT

BACKGROUND: Therapeutic options for patients with anaplastic gliomas (AGs) are limited despite better insights into glioma biology. The authors previously reported improved outcome in patients with recurrent glioblastoma treated with thalidomide and irinotecan compared with historical controls. Here, results of the AG arm of the study are reported, using this drug combination. METHODS: Adults with recurrent AG previously treated with radiation therapy, with Karnofsky performance score ≥70, adequate organ function and not on enzyme-inducing anticonvulsants were enrolled. Treatment was in 6-week cycles with irinotecan at 125 mg/m(2) weekly for 4 weeks followed by 2 weeks off, and thalidomide at 100 mg daily increased to 400 mg/day as tolerated. The primary endpoint was progression-free survival rate at 6 months (PFS-6), and the secondary endpoints were overall survival (OS) and response rate (RR). RESULTS: In 39 eligible patients, PFS-6 for the intent-to-treat population was 36% (95% confidence interval [CI] = 21%, 53%), median PFS was 13 weeks (95% CI = 6%, 28%) and RR was 10%(95% CI = 3%, 24%). Radiological findings included 2 complete and 2 partial responses and 17 stable disease. Median OS from study registration was 62 weeks, (95% CI = 51, 144). Treatment-related toxicities (grade 3 or higher) included neutropenia, diarrhea, nausea, and fatigue; 6 patients experienced venous thromboembolism. Four deaths were attributable to treatment-related toxicities: 1 from pulmonary embolism, 2 from colitis, and 1 from urosepsis. CONCLUSIONS: The combination of thalidomide and irinotecan did not achieve sufficient efficacy to warrant further investigation against AG, although a subset of patients experienced prolonged PFS/OS. A trial of the more potent thalidomide analogue, lenalidomide, in combination with irinotecan against AG is currently ongoing.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Thalidomide/analogs & derivatives , Thalidomide/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease-Free Survival , Drug Administration Schedule , Female , Humans , Lenalidomide , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Young Adult
19.
Nat Genet ; 54(12): 1881-1894, 2022 12.
Article in English | MEDLINE | ID: mdl-36471067

ABSTRACT

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.


Subject(s)
Glioma , Humans , Child , Glioma/genetics , Histones/genetics , Methionine , Mutation , Racemethionine , Tumor Microenvironment/genetics
20.
J Neurooncol ; 104(1): 351-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21221714

ABSTRACT

Glioblastoma (GBM) is rare in early adulthood and little information is available on this subgroup. We investigated whether young age (18-30 years) had an independent effect on survival. We retrospectively reviewed patients from two large databases: Radiation Therapy Oncology Group (RTOG) and American College of Surgeons National Cancer Data Base (NCDB). In the RTOG evaluation, we analyzed all eligible GBM cases from 17 RTOG studies from 1974 to 2002. All patients with GBM during 1985-1998 in the NCDB were examined for comparison. Patients were divided into three cohorts: ages 18-30, 31-49, and ≥50. Overall survival, as a function of age (discreet and continuous), was assessed. The RTOG review included 3,136 patients: 112 (3.6%) were 18-30, 780 (24.9%) were 31-49, and 2,244 (71.6%) were ≥50. The median survival times of the three groups were 21.0, 13.5, and 9.1 months (P < 0.0001). Significant improvement in survival for younger patients was demonstrated with adjustment for recursive partitioning analysis (RPA) class. Of the 37,260 patients analyzed in the NCDB, 796 (2.1%) were 18-30, 5,711 (15.3%) were 31-49, and 30,753 (82.5%) were ≥50. The median survival times of the three groups were 18.0, 12.8, and 6.3 months (P < 0.0001). Data were not available for RPA class from this series. GBM is rare in young adulthood, comprising 2.1-3.6% of our patients. They have superior survival, even when adjusted for RPA class. More investigations on the unique biologic and clinical characteristics of tumors in this population are needed.


Subject(s)
Aging , Brain Neoplasms/radiotherapy , Glioblastoma/radiotherapy , Radiation Oncology/methods , Adolescent , Adult , Age Factors , Brain Neoplasms/mortality , Female , Glioblastoma/mortality , Humans , Karnofsky Performance Status , Male , Middle Aged , Prognosis , Retrospective Studies , Societies, Medical/statistics & numerical data , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL