Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Biol Chem ; 294(22): 8676-8689, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30975903

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.


Subject(s)
Cell Nucleus/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , 3T3-L1 Cells , Acrylamides/pharmacology , Active Transport, Cell Nucleus , Animals , Cell Cycle Checkpoints , Cell Proliferation , Cell Survival/drug effects , Cytoplasm/metabolism , Hep G2 Cells , Histones/metabolism , Humans , Mice , Mutagenesis, Site-Directed , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/genetics , Oxidative Stress , Piperidines/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sirtuins/metabolism
2.
Physiol Genomics ; 50(1): 52-66, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29127223

ABSTRACT

Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.


Subject(s)
Adipose Tissue, Brown/metabolism , Animals , Genetic Predisposition to Disease/genetics , Glucose/metabolism , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Quantitative Trait Loci/genetics , Rats , Rats, Inbred BN , Rats, Inbred SHR
3.
Alcohol Clin Exp Res ; 42(7): 1177-1191, 2018 07.
Article in English | MEDLINE | ID: mdl-29689131

ABSTRACT

BACKGROUND: A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the curve in a recombinant inbred (RI) (HXB/BXH) rat panel. The approach was also used to provide an indication of how EtOH metabolism can impact the normal function of the identified networks. METHODS: RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH RI rats. The reconstructed transcripts were quantitated, and data were used to construct gene coexpression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with EtOH (2 g/kg) for measurement of blood EtOH and acetate levels. These data were used for quantitative trait loci (QTL) analysis of the rate of EtOH disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with EtOH metabolism rates and acetate levels across the rat strains, and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. RESULTS: Of the 658 transcript coexpression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained 2 alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. CONCLUSIONS: We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for coexpression module components.


Subject(s)
Ethanol/metabolism , Liver/metabolism , Metabolic Clearance Rate/physiology , Multifactorial Inheritance/physiology , Systems Biology/methods , Unsupervised Machine Learning , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Animals , Ethanol/administration & dosage , Liver/drug effects , Male , Metabolic Clearance Rate/drug effects , Multifactorial Inheritance/drug effects , Rats , Rats, Inbred BN , Rats, Inbred SHR , Rats, Transgenic
4.
Nature ; 478(7367): 114-8, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21979051

ABSTRACT

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Subject(s)
Cardiomegaly/enzymology , Cardiomegaly/pathology , Endodeoxyribonucleases/metabolism , Mitochondria/metabolism , Animals , Apoptosis , Body Weight/genetics , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Cell Respiration , Chromosomes, Mammalian/genetics , Crosses, Genetic , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/genetics , Female , Gene Expression Regulation , Genes, Mitochondrial/genetics , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Lipid Metabolism , Male , Mitochondria/genetics , Mitochondria/pathology , Organ Size/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Quantitative Trait Loci/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Inbred Strains , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Transcription Factors/metabolism , ERRalpha Estrogen-Related Receptor
5.
Physiol Genomics ; 48(6): 420-7, 2016 06.
Article in English | MEDLINE | ID: mdl-27113533

ABSTRACT

Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.


Subject(s)
Adipose Tissue, Brown/metabolism , Autocrine Communication/physiology , Glucose/metabolism , Palmitates/metabolism , Resistin/genetics , Adipose Tissue, Brown/physiology , Animals , Autocrine Communication/genetics , Fatty Acids, Nonesterified/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred BALB C , Mitochondria/genetics , Mitochondria/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Obesity/metabolism , Obesity/physiopathology , Oxidation-Reduction , Rats , Rats, Inbred SHR , Rats, Transgenic , Transcriptome/genetics
6.
Physiol Genomics ; 46(18): 671-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25073601

ABSTRACT

Common inbred strains of the laboratory rat can be divided into four major mitochondrial DNA (mtDNA) haplotype groups represented by the BN, F344, LEW, and SHR strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. F344 mtDNA by comparing the SHR vs. SHR-mt(F344) conplastic strains that are genetically identical except for their mitochondrial genomes. Altogether 13 amino acid substitutions in protein coding genes, seven single nucleotide polymorphisms in tRNA genes, and 12 single nucleotide changes in rRNA genes were detected in F344 mtDNA compared with SHR mtDNA. Analysis of oxidative phosphorylation system (OXPHOS) in heart left ventricles (LV), muscle, and liver revealed reduced activity and content of several respiratory chain complexes in SHR-mt(F344) conplastic rats compared with the SHR strain. Lower function of OXPHOS in LV of conplastic rats was associated with significantly increased relative ventricular mass and reduced fractional shortening that was independent of blood pressure. In addition, conplastic rats exhibited reduced sensitivity of skeletal muscles to insulin action and impaired glucose tolerance. These results provide evidence that inherited alterations in mitochondrial genome, in the absence of variation in the nuclear genome and other confounding factors, predispose to insulin resistance, cardiac hypertrophy and systolic dysfunction.


Subject(s)
Cardiomegaly/genetics , Cardiomegaly/physiopathology , DNA, Mitochondrial/genetics , Insulin Resistance/genetics , Oxidative Phosphorylation , Systole , Adenine Nucleotides/metabolism , Animals , Base Sequence , Blood Pressure/drug effects , Electrocardiography , Electron Transport/drug effects , Gene Dosage , Genes, Mitochondrial , Glucose/metabolism , Glucose Tolerance Test , Haplotypes/genetics , Insulin/pharmacology , Lipid Metabolism/drug effects , Male , Molecular Sequence Data , Organ Size/drug effects , Oxidative Phosphorylation/drug effects , Phenotype , RNA, Transfer/genetics , Rats, Inbred F344 , Rats, Inbred SHR , Sequence Analysis, DNA , Systole/drug effects , Ventricular Function, Left/drug effects
7.
FASEB J ; 27(3): 930-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23195032

ABSTRACT

Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50-64, 14-72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.


Subject(s)
DNA Transposable Elements/genetics , Gene Silencing , Gene Transfer Techniques , Genetic Vectors , Mosaicism , Transgenes , Animals , Female , Male , Mice , Mice, Transgenic , Organ Specificity/genetics , Rabbits , Rats , Rats, Sprague-Dawley
8.
Nat Genet ; 37(3): 243-53, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15711544

ABSTRACT

Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.


Subject(s)
Gene Expression Profiling , Transcription, Genetic , Animals , Blood Pressure/genetics , Genetic Linkage , Quantitative Trait Loci , Rats , Recombination, Genetic
9.
Pflugers Arch ; 465(10): 1477-86, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23636771

ABSTRACT

Dysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased ß-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol. Genomics 44:173-182). The present study aimed to determine whether the insertion of the wild type Cd36 into SHR would affect the function of myocardial G protein-regulated adenylyl cyclase (AC) signaling. ß-Adrenergic receptors (ß-ARs) were characterized by radioligand-binding experiments and the expression of selected G protein subunits, AC, and protein kinase A (PKA) was determined by RT-PCR and Western blot analyses. There was no significant difference in the amount of trimeric G proteins, but the number of ß-ARs was higher (by about 35 %) in myocardial preparations from SHR-Cd36 as compared to SHR. Besides that, transgenic rats expressed increased amount (by about 20 %) of the dominant myocardial isoforms AC5/6 and contained higher levels of both nonphosphorylated (by 11 %) and phosphorylated (by 45 %) PKA. Differently stimulated AC activity in SHR-Cd36 significantly exceeded (by about 18-30 %) the enzyme activity in SHR. Changes at the molecular level were reflected by higher contractile responses to stimulation by the adrenergic agonist dobutamine. In summary, it can be concluded that the increased susceptibility to ischemic arrhythmias of SHR-Cd36 is attributable to upregulation of some components of the ß-AR signaling pathway, which leads to enhanced sensitization of AC and increased cardiac adrenergic responsiveness.


Subject(s)
Adenylyl Cyclases/metabolism , CD36 Antigens/genetics , Myocardium/metabolism , Signal Transduction , Adenylyl Cyclases/genetics , Adrenergic beta-1 Receptor Agonists/pharmacology , Animals , CD36 Antigens/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dobutamine/pharmacology , GTP-Binding Proteins/metabolism , Myocardial Contraction , Rats , Rats, Inbred SHR , Rats, Transgenic , Receptors, Adrenergic, beta/metabolism
10.
Basic Res Cardiol ; 108(1): 316, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23197152

ABSTRACT

The mechanisms underlying coronary microvascular remodeling and dysfunction, which are critical determinants of abnormal myocardial blood flow regulation in human hypertension, are poorly understood. The spontaneously hypertensive rat (SHR) exhibits many features of human hypertensive cardiomyopathy. We demonstrate that remodeling of intramural coronary arterioles is apparent in the SHR already at 4 weeks of age, i.e. before the onset of systemic hypertension. To uncover possible genetic determinants of coronary microvascular remodeling, we carried out detailed histological and histomorphometric analysis of the heart and coronary vasculature in 30 weeks old SHR, age-matched Brown Norway (BN-Lx) parentals and BXH/HXB recombinant inbred (RI) strains. Using previously mapped expression quantitative trait loci (eQTLs), we carried out a genome-wide association analysis between genetic determinants of cardiac gene expression and histomorphometric traits. This identified 36 robustly mapped eQTLs in the heart which were associated with medial area of intramural coronary arterioles [false discovery rate (FDR) ~5%]. Transcripts, which were both under cis-acting genetic regulation and significantly correlated with medial area (FDR <5%), but not with blood pressure indices, were prioritized and four candidate genes were identified (Rtel1, Pla2g5, Dnaja4 and Rcn2) according to their expression levels and biological functions. Our results demonstrate that genetic factors play a role in the development of coronary microvascular remodeling and suggest blood pressure independent candidate genes for further functional experiments.


Subject(s)
Coronary Vessels/pathology , Hypertension/pathology , Quantitative Trait Loci , Animals , Blood Pressure , Coronary Vessels/physiopathology , Genome-Wide Association Study , Hypertension/genetics , Hypertension/physiopathology , Male , Microvessels/pathology , Microvessels/physiopathology , Myocardium/metabolism , Rats , Rats, Inbred BN , Rats, Inbred SHR , Rats, Inbred WKY
11.
Physiol Genomics ; 44(9): 487-94, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22414913

ABSTRACT

Common inbred strains of the laboratory rat can be divided into four different mitochondrial DNA haplotype groups represented by the SHR, BN, LEW, and F344 strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. LEW mitochondrial genomes by comparing the SHR to a new SHR conplastic strain, SHR-mt(LEW); these strains are genetically identical except for their mitochondrial genomes. Complete mitochondrial DNA (mtDNA) sequence analysis comparing the SHR and LEW strains revealed gene variants encoding amino acid substitutions limited to a single mitochondrial enzyme complex, NADH dehydrogenase (complex I), affecting subunits 2, 4, and 5. Two of the variants in the mt-Nd4 subunit gene are located close to variants known to be associated with exercise intolerance and diabetes mellitus in humans. No variants were found in tRNA or rRNA genes. These variants in mt-Nd2, mt-Nd4, and mt-Nd5 in the SHR-mt(LEW) conplastic strain were linked to reductions in oxidative and nonoxidative glucose metabolism in skeletal muscle. In addition, SHR-mt(LEW) conplastic rats showed increased serum nonesterified fatty acid levels and resistance to insulin stimulated incorporation of glucose into adipose tissue lipids. These results provide evidence that inherited variation in mitochondrial genes encoding respiratory chain complex I subunits, in the absence of variation in the nuclear genome and other confounding factors, can influence glucose and lipid metabolism when expressed on the nuclear genetic background of the SHR strain.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Hypertension/genetics , Insulin Resistance/genetics , NADH Dehydrogenase/genetics , Oxidative Phosphorylation , Adenine Nucleotides/metabolism , Adipose Tissue/enzymology , Amino Acid Sequence , Animals , Blood Glucose/metabolism , Blood Pressure , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Fructose/administration & dosage , Fructose/metabolism , Haplotypes , Heart Rate , Heredity , Hypertension/blood , Hypertension/enzymology , Hypertension/physiopathology , Insulin/blood , Molecular Sequence Data , Muscle, Skeletal/enzymology , NADH Dehydrogenase/metabolism , Phenotype , Rats , Rats, Inbred BN , Rats, Inbred F344 , Rats, Inbred Lew , Rats, Inbred SHR
12.
Physiol Genomics ; 44(2): 173-82, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22128087

ABSTRACT

CD36 fatty acid translocase plays a key role in supplying heart with its major energy substrate, long-chain fatty acids (FA). Previously, we found that the spontaneously hypertensive rat (SHR) harbors a deletion variant of Cd36 gene that results in reduced transport of long-chain FA into cardiomyocytes and predisposes the SHR to cardiac hypertrophy. In the current study, we analyzed the effects of mutant Cd36 on susceptibility to ischemic ventricular arrhythmias and myocardial infarction in adult SHR-Cd36 transgenic rats with wild-type Cd36 compared with age-matched SHR controls. Using an open-chest model of coronary artery occlusion, we found that SHR-Cd36 transgenic rats showed profound arrhythmogenesis resulting in significantly increased duration of tachyarrhythmias (207 ± 48 s vs. 55 ± 21 s, P < 0.05), total number of premature ventricular complexes (2,623 ± 517 vs. 849 ± 250, P < 0.05) and arrhythmia score (3.86 ± 0.18 vs. 3.13 ± 0.13, P < 0.001). On the other hand, transgenic SHR compared with SHR controls showed significantly reduced infarct size (52.6 ± 4.3% vs. 72.4 ± 2.9% of area at risk, P < 0.001). Similar differences were observed in isolated perfused hearts, and the increased susceptibility of transgenic SHR to arrhythmias was abolished by reserpine, suggesting the involvement of catecholamines. To further search for possible molecular mechanisms of altered ischemic tolerance, we compared gene expression profiles in left ventricles dissected from 6-wk-old transgenic SHR vs. age-matched controls using Illumina-based sequencing. Circadian rhythms and oxidative phosphorylation were identified as the top KEGG pathways, while circadian rhythms, VDR/RXR activation, IGF1 signaling, and HMGB1 signaling were the top IPA canonical pathways potentially important for Cd36-mediated effects on ischemic tolerance. It can be concluded that transgenic expression of Cd36 plays an important role in modulating the incidence and severity of ischemic and reperfusion ventricular arrhythmias and myocardial infarct size induced by coronary artery occlusion. The proarrhythmic effect of Cd36 transgene appears to be dependent on adrenergic stimulation.


Subject(s)
Arrhythmias, Cardiac/genetics , CD36 Antigens/genetics , Gene Expression Profiling , Myocardial Infarction/genetics , Animals , Arrhythmias, Cardiac/metabolism , Blood Pressure , CD36 Antigens/metabolism , Genetic Predisposition to Disease , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Rats , Rats, Inbred SHR
13.
Biochem Cell Biol ; 90(2): 179-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22300453

ABSTRACT

Silent information regulators are NAD(+)-dependent enzymes that display differential specificity toward acetylated substrates. This report provides first evidence for deacetylation activity of CobB1 in Streptomyces coelicolor. The protein is highly conserved in streptomycetes. The CobB1 protein catalytically removes the acetyl group from acetylated bovine serum albumin. In the absence of NAD+ or when NAD+ was substituted with nicotinamide, deacetylation was stopped. We isolated gene encoding AcetylCoA synthetaseA. The recombinant enzyme produces Acetyl-CoA from acetate. The highest acsA-mRNA level was detected in cells from the exponential phase of growth, and then decreased in transition and stationary phases of growth. Acetylated acsA loses the ability to transfer acetate to CoA. Deacetylation of the enzyme required CobB1, ATP-Mg2, and NAD+. Using specific antibodies against acetylated lys, CobB1, and acsA, we found relationship between level of CobB1 and acetylation of acsA, indicating that CobB1 is involved in regulating the acetylation level of acsA and consequently its activity. It was found that 1-acetyl-tetrahydroxy and 1-acetyl pentahydroxy antraquinone inhibit the deacetylation activity of CobB1.


Subject(s)
Protein Processing, Post-Translational , Sirtuins/chemistry , Streptomyces coelicolor/enzymology , Acetate-CoA Ligase/biosynthesis , Acetate-CoA Ligase/chemistry , Acetate-CoA Ligase/genetics , Acetylation , Amino Acid Sequence , Anthraquinones/chemistry , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Catalytic Domain , Conserved Sequence , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Sequence Alignment , Sirtuins/antagonists & inhibitors , Sirtuins/biosynthesis , Streptomyces coelicolor/growth & development , Streptomyces coelicolor/metabolism , Transcription, Genetic
14.
Physiol Genomics ; 43(7): 372-9, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21285283

ABSTRACT

Increased circulating levels of resistin have been proposed as a possible link between obesity and insulin resistance; however, many of the potential metabolic effects of resistin remain to be investigated, including systemic versus local resistin action. We investigated potential autocrine effects of resistin on lipid and glucose metabolism in 2- and 16-mo-old transgenic spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin under control of the aP2 promoter. To search for possible molecular mechanisms, we compared gene expression profiles in adipose tissue in 6-wk-old transgenic SHR versus control rats, before development of insulin resistance, by digital transcriptional profiling using high-throughput sequencing. Both young and old transgenic rats showed moderate expression of the resistin transgene in adipose tissue but had serum resistin levels similar to control SHR and undetectable levels of transgenic resistin in the circulation. Young transgenic rats exhibited mild glucose intolerance. In contrast, older transgenic rats displayed marked glucose intolerance in association with near total resistance of adipose tissue to insulin-stimulated glucose incorporation into lipids (6 ± 2 vs. 77 ± 19 nmol glucose·g(-1)·2 h(-1), P < 0.00001). Ingenuity Pathway Analysis of differentially expressed genes revealed calcium signaling, Nuclear factor-erythroid 2-related factor-2 (NRF2)-mediated oxidative stress response, and actin cytoskeletal signaling canonical pathways as those most significantly affected. Analysis using DAVID software revealed oxidative phosphorylation, glutathione metabolism, pyruvate metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling as top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These results suggest that with increasing age autocrine effects of resistin in fat tissue may predispose to diabetes in part by impairing insulin action in adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Aging/metabolism , Gene Expression Profiling/methods , Resistin/metabolism , Aging/genetics , Animals , Glucose Tolerance Test , Insulin Resistance/genetics , Insulin Resistance/physiology , Polymerase Chain Reaction , Rats , Rats, Inbred SHR , Rats, Transgenic , Resistin/genetics
15.
Biochem Biophys Res Commun ; 391(3): 1348-51, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20006584

ABSTRACT

The functional role of CD36 protein detected in mitochondrial fractions in long chain fatty acid (LCFA) oxidation is unclear due to conflicting results obtained in Cd36 knockout mice and experiments using sulfo-N-succinimidyl oleate (SSO) for inhibition of CD36 mediated LCFA transport. We investigated effect of SSO on mitochondrial respiration and found that SSO substantially inhibits not only LCFA oxidation, but also oxidation of flavoprotein- and NADH-dependent substrates and generation of mitochondrial membrane potential. Experiments in rat liver, heart and kidney mitochondria demonstrated a direct effect on mitochondrial respiratory chain with the most pronounced inhibition of the complex III (IC(50) 4microM SSO). The results presented here show that SSO is a potent and irreversible inhibitor of mitochondrial respiratory chain.


Subject(s)
CD36 Antigens/drug effects , Electron Transport Complex III/antagonists & inhibitors , Fatty Acids/metabolism , Mitochondria/drug effects , Oleic Acids/pharmacology , Succinimides/pharmacology , Animals , Biological Transport/drug effects , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Respiration/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Knockout , Mitochondria/enzymology , Rats , Rats, Inbred WKY
16.
Mol Cell Biochem ; 335(1-2): 119-25, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19756959

ABSTRACT

The temporal relationship of hepatic steatosis and changes in liver oxidative stress and fatty acid (FA) composition to the development of non-alcoholic steatohepatitis (NASH) remain to be clearly defined. Recently, we developed an experimental model of hepatic steatosis and NASH, the transgenic spontaneously hypertensive rat (SHR) that overexpresses a dominant positive form of the human SREBP-1a isoform in the liver. These rats are genetically predisposed to hepatic steatosis at a young age that ultimately progresses to NASH in older animals. Young transgenic SHR versus SHR controls exhibited simple hepatic steatosis which was associated with significantly increased hepatic levels of oxidative stress markers, conjugated dienes, and TBARS, with decreased levels of antioxidative enzymes and glutathione and lower concentrations of plasma alpha- and gamma-tocopherol. Transgenic rats exhibited increased plasma levels of saturated FA, decreased levels of n-3 and n-6 polyunsaturated FA (PUFA), and increased n-6/n-3 PUFA ratios. These results are consistent with the hypothesis that excess fat accumulation in the liver in association with increased oxidative stress and disturbances in the metabolism of saturated and unsaturated fatty acids may precede and contribute to the primary pathogenesis of NASH.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fatty Liver/metabolism , Liver/metabolism , Oxidative Stress , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Genetic Predisposition to Disease , Humans , Liver/pathology , Rats , Rats, Inbred SHR , Rats, Transgenic , Sterol Regulatory Element Binding Protein 1/metabolism
18.
J Hypertens ; 26(6): 1209-15, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18475159

ABSTRACT

OBJECTIVES: Telmisartan is an angiotensin II receptor blocker and selective modulator of peroxisome proliferator-activated receptor-gamma reported to increase energy expenditure and improve glucose and lipid metabolism compared with other angiotensin II receptor blockers. As muscle fatty acid oxidation is a major determinant of energy expenditure, we investigated the effects of telmisartan on skeletal muscle fatty acid oxidation in a rat model of the metabolic syndrome. METHODS: We measured fatty acid oxidation in soleus muscles obtained from polydactylous (PD)/Cub rats fed a high sucrose, high fat diet and treated with either telmisartan or losartan. In addition, we measured fatty acid oxidation in soleus muscle tissue isolated from Sprague-Dawley rats, incubated for 3 h with either telmisartan or valsartan. RESULTS: Compared with treatment with losartan, treatment with telmisartan was associated with significantly greater palmitate oxidation in skeletal muscle (44.4 +/- 2.9 versus 28.9 +/- 3.2 nmol palmitate/g/2 h, P = 0.004) as well as significantly greater glucose tolerance and significantly lower body weight and visceral adiposity. In addition, in-vitro incubation of skeletal muscle with telmisartan induced significantly greater increase in palmitate oxidation than in-vitro incubation with valsartan (9.4 +/- 1.6 versus 0.2 +/- 4.3 nmol palmitate/g/h, P < 0.05). The increased fatty acid oxidation induced by telmisartan in vitro was blocked by addition of the peroxisome proliferator-activated receptor-gamma antagonist GW9662 (-0.4 +/- 1.8 nmol palmitate/g/h, P < 0.05). CONCLUSION: The current results are consistent with the possibility that telmisartan may increase energy expenditure and protect against dietary induced obesity and features of the metabolic syndrome at least in part by increasing muscle fatty acid oxidation through activation of peroxisome proliferator-activated receptor-gamma.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Benzimidazoles/pharmacology , Benzoates/pharmacology , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , PPAR gamma/metabolism , Adiposity/drug effects , Animals , Losartan/pharmacology , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Rats, Wistar , Telmisartan , Weight Gain/drug effects
19.
Hypertens Res ; 31(8): 1659-68, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18971542

ABSTRACT

Recombinant inbred (RI) strains (Prague HXB/BXH set) represent a unique model that allows for permanent summation of genetic and physiological information as well as the study of age-dependent changes in phenotypes and/or gene regulation. This study compared blood pressure (BP) measured in adult animals of RI strains by radiotelemetry with BP values obtained in conscious rats of comparable age subjected to short-term carotid catheterization or with those obtained by direct carotid puncture under ether anesthesia (almost 20 years ago). After radiotelemetry recording, the contribution of major vasoactive systems to BP maintenance was studied by consecutive inhibition of the renin-angiotensin system (RAS), sympathetic nervous system (SNS), and nitric oxide synthase. We found highly significant interrelationships among baseline BP values obtained by radiotelemetry, carotid catheterization, or carotid puncture. This indicates considerable stability of RI strains over the course of their long existence, and confirms the reliability of BP values used for genetic studies performed in the past. Subsequent analysis of vasoactive system participation revealed the importance of SNS for the maintenance of BP, as determined by either radiotelemetry or catheterization. The BP of catheterized rats also correlated closely with acute captopril-induced BP changes, but this was not the case for rats measured by radiotelemetry. NO-dependent vasodilatation matched the BP effects of SNS and RAS in both measuring conditions. Residual BP (recorded at sodium nitroprusside-induced dilatation of resistance vessels) was also responsible for a significant portion of the BP variation in RI strains. Our study confirms the validity of RI strains for the further genetic and physiological research of hypertension.


Subject(s)
Blood Pressure/genetics , Disease Models, Animal , Hypertension/genetics , Rats, Inbred SHR/genetics , Rats, Inbred Strains/genetics , Animals , Antihypertensive Agents/pharmacology , Catheterization , Heart Rate/genetics , Hypertension/drug therapy , Hypertension/physiopathology , Monitoring, Physiologic , Nitric Oxide Synthase/metabolism , Organ Size/genetics , Rats , Recombinant Proteins/genetics , Renin-Angiotensin System/physiology , Sympathetic Nervous System/physiology , Telemetry
20.
Diabetes ; 67(6): 1190-1199, 2018 06.
Article in English | MEDLINE | ID: mdl-29549163

ABSTRACT

Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.


Subject(s)
Adipose Tissue, White/metabolism , Gene Expression Regulation, Enzymologic , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Palmitic Acid/metabolism , Peroxiredoxin VI/metabolism , Stearic Acids/metabolism , Adipose Tissue, White/enzymology , Animals , Biomarkers/metabolism , Esters/chemistry , Esters/metabolism , Female , Gene Expression Profiling , Male , Metabolomics/methods , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Palmitic Acid/chemistry , Peroxiredoxin VI/genetics , Random Allocation , Rats , Rats, Inbred BN , Rats, Inbred SHR , Rats, Transgenic , Stearic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL