Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Nature ; 595(7869): 661-666, 2021 07.
Article in English | MEDLINE | ID: mdl-34321672

ABSTRACT

Strange metals possess highly unconventional electrical properties, such as a linear-in-temperature resistivity1-6, an inverse Hall angle that varies as temperature squared7-9 and a linear-in-field magnetoresistance10-13. Identifying the origin of these collective anomalies has proved fundamentally challenging, even in materials such as the hole-doped cuprates that possess a simple bandstructure. The prevailing consensus is that strange metallicity in the cuprates is tied to a quantum critical point at a doping p* inside the superconducting dome14,15. Here we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond p*. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high values of the ratio of the field and the temperature, indicating that the strange-metal regime extends well beyond p*. Moreover, the magnitude of the magnetoresistance is found to be much larger than predicted by conventional theory and is insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange-metal region hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant 'Planckian' dissipators.

2.
Nat Mater ; 19(4): 381-385, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31959951

ABSTRACT

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

3.
4.
Nature ; 518(7538): 179-86, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673411

ABSTRACT

The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.

5.
Phys Rev Lett ; 106(4): 047004, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405350

ABSTRACT

We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, T(c) may be enhanced through an increase in the d-wave pairing interaction (V(d)) or the bare pairing susceptibility (χ(0d)). At optimal doping, where V(d) is revealed to be featureless, we find a power-law behavior of χ(0d)(ω=0), replacing the BCS log, and strongly enhanced T(c). We suggest experiments to verify our predictions.

6.
Nature ; 438(7067): 474-8, 2005 Nov 24.
Article in English | MEDLINE | ID: mdl-16306987

ABSTRACT

A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the 'd-wave' symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite 'Fermi arcs'. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

7.
Sci Rep ; 11(1): 7105, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33782440

ABSTRACT

A highlight of Fermi-liquid phenomenology, as explored in neutral [Formula: see text]He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this "transverse zero sound" requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the "material photon" being the actual manifestation of transverse zero sound in the charged Fermi liquid.

8.
Science ; 373(6551): 213-216, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34244413

ABSTRACT

The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a material class that mirrors the cuprate superconductors. We measured the magnetic excitations in these nickelates using resonant inelastic x-ray scattering at the Ni L 3-edge. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 milli-electron volts, which is reminiscent of the spin wave of strongly coupled, antiferromagnetically aligned spins on a square lattice. The substantial damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, whereas the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.

9.
Nature ; 425(6955): 271-4, 2003 Sep 18.
Article in English | MEDLINE | ID: mdl-13679910

ABSTRACT

Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.

10.
Science ; 254(5034): 989-92, 1991 Nov 15.
Article in English | MEDLINE | ID: mdl-17731521

ABSTRACT

Intramolecular vibrations strongly scatter electrons near the Fermi-surface in doped fullerenes. A simple expression for the electron-phonon coupling parameters for this case is derived and evaluated by quantum-chemical calculations. The observed superconducting transition temperatures and their variation with lattice constants can be understood on this basis. To test the ideas and calculations presented here, we predict that high frequency H(2) modes acquire a width of about 20% of their frequency in superconductive fullerenes, and soften by about 5% compared to the insulating fullerenes.

11.
Science ; 362(6410): 62-65, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30287656

ABSTRACT

Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-critical temperature (T c) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. In this study, we used angle-resolved photoemission spectroscopy to find a pronounced correlation between the superconducting gap and the bosonic coupling strength near the Brillouin zone boundary in Bi2Sr2CaCu2O8+δ The bosonic coupling strength rapidly increases from the overdoped Fermi liquid regime to the optimally doped strange metal, concomitant with the quadrupled superconducting gap and the doubled gap-to-T c ratio across the pseudogap boundary. This synchronized lattice and electronic response suggests that the effects of electronic interaction and the electron-phonon coupling (EPC) reinforce each other in a positive-feedback loop upon entering the strange-metal regime, which in turn drives a stronger superconductivity.

12.
Nature ; 404(6779): 714-5, 2000 Apr 13.
Article in English | MEDLINE | ID: mdl-10783870
13.
Science ; 255(5051): 1490-1, 1992 Mar 20.
Article in English | MEDLINE | ID: mdl-17820140
14.
Philos Trans A Math Phys Eng Sci ; 369(1941): 1599-625, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21422017

ABSTRACT

We put forward here the case that the anomalous electron states found in cuprate superconductors and related systems are rooted in a deeply non-classical fermion sign structure. The collapse of Mottness, as advocated by Phillips and supported by recent dynamical cluster approximation results on the Hubbard model, sets the necessary microscopic conditions. The crucial insight is due to Weng, who demonstrated that, in the presence of Mottness, the fundamental workings of quantum statistics change, and we will elaborate on the effects of this Weng statistics with an emphasis on characterizing it further using numerical methods. The pseudo-gap physics of the underdoped regime appears as a consequence of the altered statistics and the profound question is how to connect this by a continuous quantum phase transition to the overdoped regime ruled by normal Fermi-Dirac statistics. Proof of principle follows from Ceperley's constrained path integral formalism, in which states can be explicitly constructed showing a merger of Fermi-Dirac sign structure and scale invariance of the quantum dynamics.

15.
Science ; 333(6041): 426-30, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21778393

ABSTRACT

We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi(2)Sr(2)CaCu(2)O(8+δ). By visualizing their spatial components separately, we identified 2π topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors.

16.
Phys Rev Lett ; 55(4): 418-421, 1985 Jul 22.
Article in English | MEDLINE | ID: mdl-10032345
17.
Phys Rev Lett ; 72(16): 2600-2603, 1994 Apr 18.
Article in English | MEDLINE | ID: mdl-10055925
18.
Phys Rev Lett ; 60(25): 2685-2688, 1988 Jun 20.
Article in English | MEDLINE | ID: mdl-10038422
20.
Phys Rev Lett ; 68(7): 1054-1057, 1992 Feb 17.
Article in English | MEDLINE | ID: mdl-10046066
SELECTION OF CITATIONS
SEARCH DETAIL