Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Physiol Rev ; 99(2): 1047-1078, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30648461

ABSTRACT

Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.


Subject(s)
Aging/physiology , Cell Transformation, Neoplastic/metabolism , Cellular Senescence/physiology , Neoplasms/metabolism , Wound Healing/physiology , Aging/metabolism , Animals , Cell Proliferation/physiology , Humans
2.
Immunity ; 43(3): 527-40, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26362264

ABSTRACT

The interrelationship between IgAs and microbiota diversity is still unclear. Here we show that BALB/c mice had higher abundance and diversity of IgAs than C57BL/6 mice and that this correlated with increased microbiota diversity. We show that polyreactive IgAs mediated the entrance of non-invasive bacteria to Peyer's patches, independently of CX3CR1(+) phagocytes. This allowed the induction of bacteria-specific IgA and the establishment of a positive feedback loop of IgA production. Cohousing of mice or fecal transplantation had little or no influence on IgA production and had only partial impact on microbiota composition. Germ-free BALB/c, but not C57BL/6, mice already had polyreactive IgAs that influenced microbiota diversity and selection after colonization. Together, these data suggest that genetic predisposition to produce polyreactive IgAs has a strong impact on the generation of antigen-specific IgAs and the selection and maintenance of microbiota diversity.


Subject(s)
Antigens, Bacterial/immunology , Genetic Variation/immunology , Immunoglobulin A/immunology , Microbiota/immunology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/immunology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Feces/microbiology , Flow Cytometry , Host-Pathogen Interactions/immunology , Immunization , Immunoglobulin A/blood , Immunoglobulin A/metabolism , Metagenomics/methods , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota/genetics , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Salmonella typhimurium/physiology , Species Specificity
3.
Nature ; 559(7714): 363-369, 2018 07.
Article in English | MEDLINE | ID: mdl-29950727

ABSTRACT

Patients with prostate cancer frequently show resistance to androgen-deprivation therapy, a condition known as castration-resistant prostate cancer (CRPC). Acquiring a better understanding of the mechanisms that control the development of CRPC remains an unmet clinical need. The well-established dependency of cancer cells on the tumour microenvironment indicates that the microenvironment might control the emergence of CRPC. Here we identify IL-23 produced by myeloid-derived suppressor cells (MDSCs) as a driver of CRPC in mice and patients with CRPC. Mechanistically, IL-23 secreted by MDSCs can activate the androgen receptor pathway in prostate tumour cells, promoting cell survival and proliferation in androgen-deprived conditions. Intra-tumour MDSC infiltration and IL-23 concentration are increased in blood and tumour samples from patients with CRPC. Antibody-mediated inactivation of IL-23 restored sensitivity to androgen-deprivation therapy in mice. Taken together, these results reveal that MDSCs promote CRPC by acting in a non-cell autonomous manner. Treatments that block IL-23 can oppose MDSC-mediated resistance to castration in prostate cancer and synergize with standard therapies.


Subject(s)
Interleukin-23/antagonists & inhibitors , Interleukin-23/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Androgens/deficiency , Animals , Benzamides , Cell Proliferation , Cell Survival , Humans , Interleukin-23/blood , Interleukin-23/immunology , Male , Mice , Myeloid-Derived Suppressor Cells/cytology , Myeloid-Derived Suppressor Cells/immunology , Nitriles , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Receptors, Interleukin/metabolism , Signal Transduction
4.
Cancer Cell ; 41(3): 602-619.e11, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36868226

ABSTRACT

Tumor cells promote the recruitment of immunosuppressive neutrophils, a subset of myeloid cells driving immune suppression, tumor proliferation, and treatment resistance. Physiologically, neutrophils are known to have a short half-life. Here, we report the identification of a subset of neutrophils that have upregulated expression of cellular senescence markers and persist in the tumor microenvironment. Senescent-like neutrophils express the triggering receptor expressed on myeloid cells 2 (TREM2) and are more immunosuppressive and tumor-promoting than canonical immunosuppressive neutrophils. Genetic and pharmacological elimination of senescent-like neutrophils decreases tumor progression in different mouse models of prostate cancer. Mechanistically, we have found that apolipoprotein E (APOE) secreted by prostate tumor cells binds TREM2 on neutrophils, promoting their senescence. APOE and TREM2 expression increases in prostate cancers and correlates with poor prognosis. Collectively, these results reveal an alternative mechanism of tumor immune evasion and support the development of immune senolytics targeting senescent-like neutrophils for cancer therapy.


Subject(s)
Apolipoproteins E , Prostatic Neoplasms , Animals , Humans , Male , Mice , Apolipoproteins E/metabolism , Cellular Senescence/genetics , Membrane Glycoproteins/genetics , Myeloid Cells/metabolism , Prostatic Neoplasms/metabolism , Receptors, Immunologic/metabolism , Tumor Microenvironment
5.
Front Immunol ; 13: 873195, 2022.
Article in English | MEDLINE | ID: mdl-35757699

ABSTRACT

COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.


Subject(s)
Antirheumatic Agents , COVID-19 Drug Treatment , Rheumatic Diseases , Antirheumatic Agents/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Rheumatic Diseases/drug therapy , SARS-CoV-2
6.
Sci Immunol ; 6(62)2021 08 10.
Article in English | MEDLINE | ID: mdl-34376481

ABSTRACT

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunophenotyping , SARS-CoV-2/immunology , Transcriptome , Adult , Aged , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , COVID-19/virology , Cell Plasticity/genetics , Cell Plasticity/immunology , Clonal Evolution/immunology , Female , Gene Expression Profiling , Humans , Immunoglobulin Isotypes/immunology , Immunologic Memory , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
7.
Science ; 374(6564): 216-224, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618582

ABSTRACT

The microbiota comprises the microorganisms that live in close contact with the host, with mutual benefit for both counterparts. The contribution of the gut microbiota to the emergence of castration-resistant prostate cancer (CRPC) has not yet been addressed. We found that androgen deprivation in mice and humans promotes the expansion of defined commensal microbiota that contributes to the onset of castration resistance in mice. Specifically, the intestinal microbial community in mice and patients with CRPC was enriched for species capable of converting androgen precursors into active androgens. Ablation of the gut microbiota by antibiotic therapy delayed the emergence of castration resistance even in immunodeficient mice. Fecal microbiota transplantation (FMT) from CRPC mice and patients rendered mice harboring prostate cancer resistant to castration. In contrast, tumor growth was controlled by FMT from hormone-sensitive prostate cancer patients and Prevotella stercorea administration. These results reveal that the commensal gut microbiota contributes to endocrine resistance in CRPC by providing an alternative source of androgens.


Subject(s)
Androgens/biosynthesis , Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Host Microbial Interactions , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/microbiology , Aged , Aged, 80 and over , Androgen Antagonists/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Cell Line, Tumor , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasms, Experimental , Prevotella/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Symbiosis , Xenograft Model Antitumor Assays
8.
Nat Microbiol ; 5(3): 511-524, 2020 03.
Article in English | MEDLINE | ID: mdl-31988379

ABSTRACT

The microbiota has been shown to promote intestinal tumourigenesis, but a possible anti-tumourigenic effect has also been postulated. Here, we demonstrate that changes in the microbiota and mucus composition are concomitant with tumourigenesis. We identified two anti-tumourigenic strains of the microbiota-Faecalibaculum rodentium and its human homologue, Holdemanella biformis-that are strongly under-represented during tumourigenesis. Reconstitution of ApcMin/+ or azoxymethane- and dextran sulfate sodium-treated mice with an isolate of F. rodentium (F. PB1) or its metabolic products reduced tumour growth. Both F. PB1 and H. biformis produced short-chain fatty acids that contributed to control protein acetylation and tumour cell proliferation by inhibiting calcineurin and NFATc3 activation in mouse and human settings. We have thus identified endogenous anti-tumourigenic bacterial strains with strong diagnostic, therapeutic and translational potential.


Subject(s)
Firmicutes/physiology , Gastrointestinal Microbiome/physiology , Intestinal Neoplasms/microbiology , Intestines/microbiology , Adult , Aged , Animals , Cell Proliferation/drug effects , Colonic Neoplasms/microbiology , Colonic Neoplasms/therapy , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Fatty Acids, Volatile/metabolism , Female , Firmicutes/isolation & purification , Humans , In Situ Hybridization, Fluorescence , Intestinal Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Middle Aged , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification
9.
Cell Rep ; 28(8): 2156-2168.e5, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433989

ABSTRACT

Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc-/-; Trp53pc-/- mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease.


Subject(s)
Cellular Senescence , Macrophages/pathology , Prostatic Neoplasms/pathology , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Polarity , Chemokine CXCL2/administration & dosage , Chemokine CXCL2/pharmacology , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Staging , Neutralization Tests , PTEN Phosphohydrolase/metabolism , Receptors, Interleukin-8B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Immunol Lett ; 178: 45-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27091478

ABSTRACT

Although immunoglobulins (Ig) of the A isotype were discovered more than 50 years ago, their homeostatic function, production and specificity has only lately started to be unravelled. We have recently described that the level of IgAs is genetically determined and contributes to microbiota diversification via establishing a positive feedback loop of IgA production. Here we show that the amount of both fecal and serum IgAs is intermediate in a F1 BALB/c x C57BL/6 mixed background. Naïve mice that have never been exposed to certain bacterial strains but that carry innate IgAs that react towards those bacteria undergo de novo differentiation of antigen-specific responses, indicating that there is not just a recall of a pre-existing innate IgA response. We also demonstrate that, differently from pathogenic bacteria, a commensal does not induce systemic IgG response but only a mucosal IgA response. Thus IgAs come into different flavours and can potentiate their own production, but also drive the development of new specificities.


Subject(s)
Immunoglobulin A/immunology , Animals , Antigens, Bacterial/immunology , Bacteria/immunology , Epitopes, B-Lymphocyte/immunology , Female , Genetic Background , Immunity, Mucosal , Immunoglobulin A/blood , Immunoglobulin A, Secretory/immunology , Immunoglobulin G/immunology , Immunologic Memory , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota/immunology , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology
11.
Nat Commun ; 7: 11037, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26996437

ABSTRACT

Excessive activation of blood coagulation and neutrophil accumulation have been described in several human cancers. However, whether hypercoagulation and neutrophilia are linked and involved in cancer development is currently unknown. Here we show that spontaneous intestinal tumorigenesis correlates with the accumulation of low-density neutrophils with a pro-tumorigenic N2 phenotype and unprompted neutrophil extracellular traps (NET) formation. We find that increased circulating lipopolysaccharide induces upregulation of complement C3a receptor on neutrophils and activation of the complement cascade. This leads to NETosis, induction of coagulation and N2 polarization, which prompts tumorigenesis, showing a novel link between coagulation, neutrophilia and complement activation. Finally, in a cohort of patients with small but not large intestinal cancer, we find a correlation between neutrophilia and hypercoagulation. This study provides a mechanistic explanation for the tumour-promoting effects of hypercoagulation, which could be used as a new biomarker or as a therapeutic target.


Subject(s)
Blood Coagulation , Carcinogenesis/immunology , Carcinogenesis/pathology , Extracellular Traps/metabolism , Intestine, Small/pathology , Neutrophils/metabolism , Receptors, Complement/metabolism , Adenomatous Polyposis Coli/genetics , Adult , Aged , Aged, 80 and over , Animals , Blood Coagulation/drug effects , Carcinogenesis/drug effects , Complement Activation/drug effects , Complement Pathway, Alternative/drug effects , Disease Progression , Extracellular Traps/drug effects , Hematopoiesis/drug effects , Hemostasis/drug effects , Heparin, Low-Molecular-Weight/pharmacology , Humans , Intestinal Neoplasms/pathology , Intestine, Small/drug effects , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Models, Biological , Neutrophils/drug effects , Phenotype
12.
Science ; 350(6262): 830-4, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26564856

ABSTRACT

In healthy individuals, the intestinal microbiota cannot access the liver, spleen, or other peripheral tissues. Some pathogenic bacteria can reach these sites, however, and can induce a systemic immune response. How such compartmentalization is achieved is unknown. We identify a gut-vascular barrier (GVB) in mice and humans that controls the translocation of antigens into the blood stream and prohibits entry of the microbiota. Salmonella typhimurium can penetrate the GVB in a manner dependent on its pathogenicity island (Spi) 2-encoded type III secretion system and on decreased ß-catenin-dependent signaling in gut endothelial cells. The GVB is modified in celiac disease patients with elevated serum transaminases, which indicates that GVB dismantling may be responsible for liver damage in these patients. Understanding the GVB may provide new insights into the regulation of the gut-liver axis.


Subject(s)
Capillary Permeability/immunology , Intestines/immunology , Intestines/microbiology , Microbiota/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Animals , Antigens, Bacterial/blood , Antigens, Bacterial/immunology , Celiac Disease/blood , Celiac Disease/immunology , Celiac Disease/microbiology , Genomic Islands/genetics , Genomic Islands/immunology , Humans , Ileum/blood supply , Ileum/immunology , Ileum/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestines/blood supply , Liver/immunology , Mice , Mice, Inbred C57BL , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Signal Transduction , Spleen/immunology , Transaminases/blood , Type III Secretion Systems/genetics , Type III Secretion Systems/immunology , Wnt Signaling Pathway , beta Catenin/metabolism
13.
PLoS One ; 9(2): e87615, 2014.
Article in English | MEDLINE | ID: mdl-24520333

ABSTRACT

The rapid expansion of commercially available fermented food products raises important safety issues particularly when infant food is concerned. In many cases, the activity of the microorganisms used for fermentation as well as what will be the immunological outcome of fermented food intake is not known. In this manuscript we used complex in vitro, ex-vivo and in vivo systems to study the immunomodulatory properties of probiotic-fermented products (culture supernatant and fermented milk without live bacteria to be used in infant formula). We found in vitro and ex-vivo that fermented products of Lactobacillus paracasei CBA L74 act via the inhibition of proinflammatory cytokine release leaving anti-inflammatory cytokines either unaffected or even increased in response to Salmonella typhimurium. These activities are not dependent on the inactivated bacteria but to metabolic products released during the fermentation process. We also show that our in vitro systems are predictive of an in vivo efficacy by the fermented products. Indeed CBA L74 fermented products (both culture medium and fermented milk) could protect against colitis and against an enteric pathogen infection (Salmonella typhimurium). Hence we found that fermented products can act via the inhibition of immune cell inflammation and can protect the host from pathobionts and enteric pathogens. These results open new perspectives in infant nutrition and suggest that L. paracasei CBA L74 fermented formula can provide immune benefits to formula-fed infants, without carrying live bacteria that may be potentially dangerous to an immature infant immune system.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/prevention & control , Dendritic Cells/metabolism , Fermentation/drug effects , Infant Formula/pharmacology , Lactobacillus/metabolism , Milk/metabolism , Salmonella typhimurium/drug effects , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Colitis/microbiology , Dendritic Cells/drug effects , Humans , Infant , Infant Formula/administration & dosage , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Protective Agents/administration & dosage , Protective Agents/pharmacology , Protective Agents/therapeutic use , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/physiology
14.
PLoS One ; 7(11): e50667, 2012.
Article in English | MEDLINE | ID: mdl-23209805

ABSTRACT

BACKGROUND: The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer's Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. METHODOLOGY/PRINCIPAL FINDINGS: Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. CONCLUSIONS/SIGNIFICANCE: This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/microbiology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Adaptive Immunity/physiology , Animals , Cell Line , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Phagocytosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL