Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217616

ABSTRACT

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique, is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters of endogenous fluorophores, such as NAD(P)H. To achieve accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this paper, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity is demonstrated. This has been achieved using an approach to data analysis based on the nonparametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations compared to more traditional approaches of FLIM measurements and analysis. The approach was further validated for imaging cultured cancer cells treated with chemotherapy. These results pave the way for accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.


Subject(s)
Neoplasms/metabolism , Optical Imaging/methods , Disease Progression , Humans , Neoplasms/pathology
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338976

ABSTRACT

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.


Subject(s)
NAD , Photochemotherapy , Animals , Mice , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/metabolism , Oxygen/metabolism , Disease Models, Animal , Photochemotherapy/methods
3.
Cell Mol Life Sci ; 78(7): 3467-3476, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33555392

ABSTRACT

The phase of the cell cycle determines numerous aspects of cancer cell behaviour including invasiveness, ability to migrate and responsiveness to cytotoxic drugs. To non-invasively monitor progression of cell cycle in vivo, a family of genetically encoded fluorescent indicators, FUCCI (fluorescent ubiquitination-based cell cycle indicator), has been developed. Existing versions of FUCCI are based on fluorescent proteins of two or more different colors fused to cell-cycle-dependent degradation motifs. Thus, FUCCI-expressing cells emit light of different colors in different phases providing a robust way to monitor cell cycle progression by fluorescence microscopy and flow cytometry but limiting the possibility to simultaneously visualize other markers. To overcome this limitation, we developed a single-color variant of FUCCI, called FUCCI-Red, which utilizes two red fluorescent proteins with distinct fluorescence lifetimes, mCherry and mKate2. Similarly to FUCCI, these proteins carry cell cycle-dependent degradation motifs to resolve G1 and S/G2/M phases. We showed utility of FUCCI-Red by visualizing cell cycle progression of cancer cells in 2D and 3D cultures and monitoring development of tumors in vivo by confocal and fluorescence lifetime imaging microscopy (FLIM). Single-channel registration and red-shifted spectra make FUCCI-Red sensor a promising instrument for multiparameter in vivo imaging applications, which was demonstrated by simultaneous detection of cellular metabolic state using endogenous fluorescence in the blue range.


Subject(s)
Cell Cycle , Colonic Neoplasms/pathology , Fluorescent Dyes/chemistry , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Optical Imaging/methods , Single Molecule Imaging/methods , Animals , Cell Proliferation , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Ubiquitination , Xenograft Model Antitumor Assays , Red Fluorescent Protein
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555468

ABSTRACT

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development.


Subject(s)
NAD , Neoplasms , Animals , Mice , NAD/metabolism , NADP/metabolism , T-Lymphocytes/metabolism , Microscopy, Fluorescence
5.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679873

ABSTRACT

Poly-(ADP-ribosyl)-ation (PARylation) is a reversible post-translational modification of proteins and DNA that plays an important role in various cellular processes such as DNA damage response, replication, transcription, and cell death. Here we designed a fully genetically encoded fluorescent sensor for poly-(ADP-ribose) (PAR) based on Förster resonance energy transfer (FRET). The WWE domain, which recognizes iso-ADP-ribose internal PAR-specific structural unit, was used as a PAR-targeting module. The sensor consisted of cyan Turquoise2 and yellow Venus fluorescent proteins, each in fusion with the WWE domain of RNF146 E3 ubiquitin ligase protein. This bipartite sensor named sPARroW (sensor for PAR relying on WWE) enabled monitoring of PAR accumulation and depletion in live mammalian cells in response to different stimuli, namely hydrogen peroxide treatment, UV irradiation and hyperthermia.


Subject(s)
Bacterial Proteins/analysis , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/analysis , Luminescent Proteins/analysis , Poly Adenosine Diphosphate Ribose/analysis , Bacterial Proteins/genetics , Biosensing Techniques/methods , Cell Line , Fluorescent Dyes/metabolism , Humans , Luminescent Proteins/genetics , Open Reading Frames , Protein Domains , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/genetics
6.
Cytometry A ; 95(1): 47-55, 2019 01.
Article in English | MEDLINE | ID: mdl-30329217

ABSTRACT

Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan. The metabolic activity of the tumor cells was assessed using fluorescence lifetime imaging of the metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H. Second harmonic generation (SHG) imaging was used to analyze the extent and properties of collagen within the tumors. We detected an early decrease in the free/bound NAD(P)H ratio in all treated tumors, indicating a shift toward a more oxidative metabolism. Monitoring of collagen showed an early increase in the amount of collagen followed by an increase in the extent of its orientation in tumors treated with cisplatin and paclitaxel, and decrease in collagen content in the case of irinotecan. Our study suggests that changes in cellular metabolism and fibrotic stroma organization precede morphological alterations and tumor size reduction, and that this indicates that NAD(P)H and collagen can be considered as intrinsic indicators of the response to treatment. This is the first time that these parameters have been investigated in tumors in vivo in the course of chemotherapy with drugs having different mechanisms of action. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Collagen/metabolism , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , NADP/metabolism , Animals , Biomarkers, Tumor/chemistry , Cell Line, Tumor , Cisplatin/therapeutic use , Collagen/chemistry , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Irinotecan/therapeutic use , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence, Multiphoton , Paclitaxel/therapeutic use , Second Harmonic Generation Microscopy
7.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 604-611, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28063999

ABSTRACT

A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase 3/genetics , Epithelial Cells/drug effects , Staurosporine/pharmacology , Animals , Apoptosis/genetics , Caspase 3/metabolism , Cell Line, Tumor , Coumarins/chemistry , Enzyme Activation/drug effects , Epithelial Cells/cytology , Epithelial Cells/metabolism , Flavin-Adenine Dinucleotide/metabolism , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , Genes, Reporter , Glycolysis/drug effects , Hydrogen-Ion Concentration , Mice , Microscopy, Fluorescence, Multiphoton , Molecular Probes/chemistry , NADP/metabolism , Oxidative Phosphorylation/drug effects , Signal Transduction
8.
Biochim Biophys Acta Gen Subj ; 1862(8): 1693-1700, 2018 08.
Article in English | MEDLINE | ID: mdl-29719197

ABSTRACT

Paclitaxel, a widely used antimicrotubular agent, predominantly eliminates rapidly proliferating cancer cells, while slowly proliferating and quiescent cells can survive the treatment, which is one of the main reasons for tumor recurrence and non-responsiveness to the drug. To improve the efficacy of chemotherapy, biomarkers need to be developed to enable monitoring of tumor responses. In this study we considered the auto-fluorescent metabolic cofactors NAD(P)H and FAD as possible indicators of cancer cell response to therapy with paclitaxel. It was found that, among the tested parameters (the fluorescence intensity-based redox ratio FAD/NAD(P)H, and the fluorescence lifetimes of NAD(P)H and FAD), the fluorescence lifetime of NAD(P)H is the most sensitive in tracking the drug response, and is capable of indicating heterogeneous cellular responses both in cell monolayers and in multicellular tumor spheroids. We observed that metabolic reorganization to a more oxidative state preceded the morphological manifestation of cell death and developed faster in cells that were more responsive to the drug. Our results suggest that noninvasive, label-free monitoring of the drug-induced metabolic changes by noting the NAD(P)H fluorescence lifetime is a valuable approach to characterize the responses of cancer cells to anti-cancer treatments and, therefore, to predict the effectiveness of chemotherapy.


Subject(s)
Apoptosis/drug effects , Biomarkers/metabolism , Flavin-Adenine Dinucleotide/metabolism , NADP/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Paclitaxel/pharmacology , Antineoplastic Agents, Phytogenic , Humans , Microscopy, Fluorescence, Multiphoton , Neoplasms/drug therapy , Oxidation-Reduction , Tumor Cells, Cultured
9.
Biochim Biophys Acta Gen Subj ; 1861(12): 3120-3130, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28916141

ABSTRACT

BACKGROUND: A promising strategy for cancer diagnosis and therapy is the development of an agent for multimodal imaging and treatment. In the present paper we report on two novel multifunctional agents prepared on the porphyrazine pigment platform using a gadolinium (III) cation chelated by red-fluorescent tetrapyrrole macrocycles (GdPz1 and GdPz2). METHODS: Spectral and magnetic properties of the compounds were analyzed. Monitoring of GdPz1 and GdPz2 accumulation in the murine colon carcinoma CT26 was performed in vivo using fluorescence imaging and MRI. The photobleaching of GdPz1 or GdPz2 and tumor growth rate after photodynamic therapy (PDT) were assessed. RESULTS: GdPz1 and GdPz2 demonstrated the selective accumulation in tumor that was indicated by higher fluorescence intensity in the tumor area in comparison with the normal tissues. The results of MRI in vivo showed that GdPz1 or GdPz2 provided significant contrast enhancement of the tumor in T1 MR images. PDT with GdPz2 resulted in ~20% decrease in fluorescence intensity of the compound and the inhibition of tumor growth. CONCLUSIONS: We assessed the efficiency of two innovative Gd(III) cation-porphyrazine chelates as bimodal MR and fluorescent probes and photosensitizers for PDT and showed their potentials for tumor diagnostics and treatment. GENERAL SIGNIFICANCE: Water-soluble structures simple in preparation and administration into the body represent special interest for theranostics of tumors. Novel porphyrazine macrocycles chelating a central gadolinium cation demonstrated a good prospect as effective multimodal agents, representing a new approach to MRI and fluorescence imaging guided PDT.


Subject(s)
Multimodal Imaging , Neoplasms/drug therapy , Photochemotherapy , Animals , Cell Line, Tumor , Chelating Agents/administration & dosage , Fluorescence , Gadolinium , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Neoplasms/diagnostic imaging
10.
Adv Exp Med Biol ; 1035: 105-119, 2017.
Article in English | MEDLINE | ID: mdl-29080133

ABSTRACT

Intracellular pH (pHi) is one of the most important parameters that regulate the physiological state of cells and tissues. pHi homeostasis is crucial for normal cell functioning. Cancer cells are characterized by having a higher (neutral to slightly alkaline) pHi and lower (acidic) extracellular pH (pHe) compared to normal cells. This is referred to as a "reversed" pH gradient, and is essential in supporting their accelerated growth rate, invasion and migration, and in suppressing anti-tumor immunity, the promotion of metabolic coupling with fibroblasts and in preventing apoptosis. Moreover, abnormal pH, both pHi and pHe, contribute to drug resistance in cancers. Therefore, the development of methods for measuring pH in living tumor cells is likely to lead to better understanding of tumor biology and to open new ways for cancer treatment. Genetically encoded, fluorescent, pH-sensitive probes represent promising instruments enabling the subcellular measurement of pHi with unrivaled specificity and high accuracy. Here, we describe a protocol for pHi imaging at a microscopic level in HeLa tumor spheroids, using the genetically encoded ratiometric (dual-excitation) pHi indicator, SypHer2.


Subject(s)
Bacterial Proteins/genetics , Biosensing Techniques , Cytoplasm/chemistry , Luminescent Proteins/genetics , Optical Imaging/methods , Spheroids, Cellular/metabolism , Bacterial Proteins/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HeLa Cells , Humans , Hydrogen-Ion Concentration , Lentivirus/genetics , Lentivirus/metabolism , Luminescent Proteins/metabolism , Optical Imaging/instrumentation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spheroids, Cellular/ultrastructure , Transfection , Tumor Cells, Cultured
11.
Adv Exp Med Biol ; 1035: 143-153, 2017.
Article in English | MEDLINE | ID: mdl-29080136

ABSTRACT

Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Imaging, Three-Dimensional/methods , Optical Imaging/methods , Photons , Spheroids, Cellular/ultrastructure , Cell Survival , HeLa Cells , Humans , Kinetics , Spheroids, Cellular/chemistry , Viscosity
12.
Biochim Biophys Acta ; 1850(9): 1905-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25964069

ABSTRACT

BACKGROUND: Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. METHODS: A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. RESULTS: Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. CONCLUSIONS: Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. GENERAL SIGNIFICANCE: We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution.


Subject(s)
Biosensing Techniques , Hydrogen-Ion Concentration , Neoplasms/metabolism , Animals , Cell Hypoxia , Genetic Engineering , HeLa Cells , Humans , Mice , Neoplasms/pathology , Spheroids, Cellular
13.
Cytokine ; 84: 10-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27203665

ABSTRACT

OX40 receptor-expressing regulatory T cells (Tregs) populate tumors and suppress a variety of immune cells, posing a major obstacle for cancer immunotherapy. Different ways to functionally inactivate Tregs by triggering OX40 receptor have been suggested, including anti-OX40 antibodies and Fc:OX40L fusion proteins. To investigate whether the soluble extracellular domain of OX40L (OX40Lexo) is sufficient to enhance antitumor immune response, we generated an OX40Lexo-expressing CT26 colon carcinoma cell line and studied its tumorigenicity in immunocompetent BALB/c and T cell deficient nu/nu mice. We found that soluble OX40L expressed in CT26 colon carcinoma favors the induction of an antitumor response which is not limited just to cells co-expressing EGFP as an antigenic determinant, but also eliminates CT26 cells expressing another fluorescent protein, KillerRed. Tumor rejection required the presence of T lymphocytes, as indicated by the unhampered tumor growth in nu/nu mice. Subsequent re-challenge of tumor-free BALB/c mice with CT26 EGFP cells resulted in no tumor growth, which is indicative of the formation of immunological memory. Adoptive transfer of splenocytes from mice that successfully rejected CT26 OX40Lexo EGFP tumors to naïve mice conferred 100% resistance to subsequent challenge with the CT26 EGFP tumor.


Subject(s)
Carcinoma/metabolism , Colonic Neoplasms/metabolism , OX40 Ligand/metabolism , Adoptive Transfer/methods , Animals , Carcinoma/immunology , Carcinoma/therapy , Cell Line , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Female , Green Fluorescent Proteins/immunology , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunologic Memory/immunology , Immunologic Memory/physiology , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mice, Nude , OX40 Ligand/immunology , Receptors, OX40/immunology , Receptors, OX40/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
14.
Biochim Biophys Acta ; 1830(11): 5059-67, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23876295

ABSTRACT

BACKGROUND: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS: HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS: Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS: miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE: This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.


Subject(s)
Flavoproteins/genetics , Genetic Therapy/methods , Oxygen/metabolism , Photosensitizing Agents/metabolism , Animals , Caspase 3/genetics , Caspase 3/metabolism , Cell Death/genetics , Cell Line , Cell Line, Tumor , Cell Membrane/genetics , Cell Membrane/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Damage , DNA Repair , Dermatitis, Phototoxic/etiology , Dermatitis, Phototoxic/genetics , Dermatitis, Phototoxic/metabolism , Female , Flavoproteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Light/adverse effects , Mice , Mice, Nude , Mitochondria/genetics , Mitochondria/metabolism , Riboflavin/genetics , Riboflavin/metabolism , Xenograft Model Antitumor Assays
15.
Front Oncol ; 13: 1121838, 2023.
Article in English | MEDLINE | ID: mdl-37064146

ABSTRACT

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer - low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.

16.
Front Oncol ; 13: 1133074, 2023.
Article in English | MEDLINE | ID: mdl-36937429

ABSTRACT

Introduction: To improve the quality of brain tumor resections, it is important to differentiate zones with myelinated fibers destruction from tumor tissue and normal white matter. Optical coherence tomography (OCT) is a promising tool for brain tissue visualization and in the present study, we demonstrate the ability of cross-polarization (CP) OCT to detect damaged white matter and differentiate it from normal and tumor tissues. Materials and methods: The study was performed on 215 samples of brain tissue obtained from 57 patients with brain tumors. The analysis of the obtained OCT data included three stages: 1) visual analysis of structural OCT images; 2) quantitative assessment based on attenuation coefficients estimation in co- and cross-polarizations; 3) building of color-coded maps with subsequent visual analysis. The defining characteristics of structural CP OCT images and color-coded maps were determined for each studied tissue type, and then two classification tests were passed by 8 blinded respondents after a training. Results: Visual assessment of structural CP OCT images allows detecting white matter areas with damaged myelinated fibers and differentiate them from normal white matter and tumor tissue. Attenuation coefficients also allow distinguishing all studied brain tissue types, while it was found that damage to myelinated fibers leads to a statistically significant decrease in the values of attenuation coefficients compared to normal white matter. Nevertheless, the use of color-coded optical maps looks more promising as it combines the objectivity of optical coefficient and clarity of the visual assessment, which leads to the increase of the diagnostic accuracy of the method compared to visual analysis of structural OCT images. Conclusions: Alteration of myelinated fibers causes changes in the scattering properties of the white matter, which gets reflected in the nature of the received CP OCT signal. Visual assessment of structural CP OCT images and color-coded maps allows differentiating studied tissue types from each other, while usage of color-coded maps demonstrates higher diagnostic accuracy values in comparison with structural images (F-score = 0.85-0.86 and 0.81, respectively). Thus, the results of the study confirm the potential of using OCT as a neuronavigation tool during resections of brain tumors.

17.
Biomed Opt Express ; 14(6): 3037-3056, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342703

ABSTRACT

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents. However, sometimes straightforward C-OCE-based differentiation is insufficient because of the similar stiffness of certain tissue components. We present a new automated approach to the rapid morphological assessment of human breast cancer based on the combined usage of C-OCE and speckle-contrast (SC) analysis. Using the SC analysis of structural OCT images, the threshold value of the SC coefficient was established to enable the separation of areas of adipose cells from necrotic cancer cells, even if they are highly similar in elastic properties. Consequently, the boundaries of the tumor bed can be reliably identified. The joint analysis of structural and elastographic images enables automated morphological segmentation based on the characteristic ranges of stiffness (Young's modulus) and SC coefficient established for four morphological structures of breast-cancer samples from patients post neoadjuvant chemotherapy (residual cancer cells, cancer stroma, necrotic cancer cells, and mammary adipose cells). This enabled precise automated detection of residual cancer-cell zones within the tumor bed for grading cancer response to chemotherapy. The results of C-OCE/SC morphometry highly correlated with the histology-based results (r =0.96-0.98). The combined C-OCE/SC approach has the potential to be used intraoperatively for achieving clean resection margins in breast cancer surgery and for performing targeted histological analysis of samples, including the evaluation of the efficacy of cancer chemotherapy.

18.
Biochem J ; 435(1): 65-71, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21214518

ABSTRACT

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.


Subject(s)
Cell Division/radiation effects , Chromatin/metabolism , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , Molecular Probes/metabolism , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/metabolism , Cell Nucleus/metabolism , Chromatin/radiation effects , DNA Damage/radiation effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Green Fluorescent Proteins/genetics , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Light , Luminescent Proteins/genetics , Molecular Probes/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/ultrastructure , Protein Transport/radiation effects , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , X-ray Repair Cross Complementing Protein 1 , Xenopus laevis
19.
Sci Rep ; 12(1): 4476, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296739

ABSTRACT

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.


Subject(s)
NAD , Neoplasms , Apoptosis , Caspase 3/metabolism , Cisplatin , Microscopy, Fluorescence/methods , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Staurosporine/pharmacology
20.
J Biophotonics ; 15(9): e202200036, 2022 09.
Article in English | MEDLINE | ID: mdl-35652856

ABSTRACT

In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses. Each of the degrees has a characteristic set of quantitatively expressed features. We focus on the identification and description of early, initial changes of the dermis as the least specific. The results obtained by us and the proposed classification of the degrees of the disease can be used to objectify the dynamics of tissue changes during treatment.


Subject(s)
Vulvar Lichen Sclerosus , Collagen Type I , Connective Tissue , Female , Humans , Microscopy , Pilot Projects , Vulvar Lichen Sclerosus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL