ABSTRACT
Hydrogels are usually depicted as a homogenous polymer block with a distinct surface. While defects in the polymer structure are looked into frequently, structural irregularities on the hydrogel surface are often neglected. In this work, thin hydrogel layers of ≈100 nm thickness (nanogels) are synthesized and characterized for their structural irregularities, as they represent the surface of macrogels. The nanogels contain a main-chain responsiveness (thermo responsive) and a responsiveness in the cross-linking points (redox responsive). By combining data from ellipsometry using box-model and two-segment-model analysis, as well as atomic force microscopy, a more defined model of the nanogel surface can be developed. Starting with a more densely cross-linked network at the silica wafer surface, the density of cross-linking gradually decreases toward the hydrogel-solvent interface. Thermo-responsive behavior of the main chain affects the entire network equally as all chain segments change solubility. Cross-linker-based redox-responsiveness, on the other hand, is only governed by the inner, more cross-linked layers of the network. Such dual responsive nanogels hence allow for developing a more detailed model of a hydrogel surface from free radical polymerization. It provides a better understanding of structural defects in hydrogels and how they are affected by responsive functionalities.
Subject(s)
Nanogels , Oxidation-Reduction , Surface Properties , Nanogels/chemistry , Hydrogels/chemistry , Temperature , Polyethylene Glycols/chemistry , Particle Size , Polyethyleneimine/chemistry , Microscopy, Atomic ForceABSTRACT
The integration of microscopic hydrogels with high specific surface area and physically reactive groups into microfluidic systems for selective molecular interactions is attracting increasing attention. Herein, the reversible capture and release of molecules through host-guest interactions of hydrogel dots in a microfluidic device is reported, which translates the supramolecular chemistry to the microscale conditions under continuous flow. Polyacrylamide (PAAm) hydrogel arrays with grafted ß-cyclodextrin (ß-CD) modified poly(2-methyl-2-oxazoline) (CD-PMOXA) chains are fabricated by photopolymerization and integrated into a polydimethylsiloxane (PDMS)-on-glass chip. The ß-CD/adamantane (ß-CD/Ada) host-guest complex is confirmed by two dimensional Nuclear Overhauser Effect Spectroscopy NMR (2D NOESY NMR) prior to transfer to microfluidics. Ada-modified molecules are successfully captured by host-guest interaction formed between the CD-PMOXA grafted chains in the hydrogel network and the guest molecule in the solution. Furthermore, the captured molecules are released by perfusing free ß-CD with higher binding affinity than those grafted in the hydrogel array. A small guest molecule adamantane-fluorescein-isothiocyanate (Ada-FITC) and a macromolecular guest molecule (Ada-PMOXA-Cyanine 5 (Cy5)) are separately captured and released for three times with a release ratio up to 46% and 92%, respectively. The reproducible capture and release of functional molecules with different sizes demonstrates the stability of this hydrogel system in microfluidics and will provide an opportunity for future applications.