Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Diabetes Obes Metab ; 25(3): 688-699, 2023 03.
Article in English | MEDLINE | ID: mdl-36314293

ABSTRACT

AIMS: Co-management of weight and glycaemia is critical yet challenging in type 1 diabetes (T1D). We evaluated the effect of a hypocaloric low carbohydrate, hypocaloric moderate low fat, and Mediterranean diet without calorie restriction on weight and glycaemia in young adults with T1D and overweight or obesity. MATERIALS AND METHODS: We implemented a 9-month Sequential, Multiple Assignment, Randomized Trial pilot among adults aged 19-30 years with T1D for ≥1 year and body mass index 27-39.9 kg/m2 . Re-randomization occurred at 3 and 6 months if the assigned diet was not acceptable or not effective. We report results from the initial 3-month diet period and re-randomization statistics before shutdowns due to COVID-19 for primary [weight, haemoglobin A1c (HbA1c), percentage of time below range <70 mg/dl] and secondary outcomes [body fat percentage, percentage of time in range (70-180 mg/dl), and percentage of time below range <54 mg/dl]. Models adjusted for design, demographic and clinical covariates tested changes in outcomes and diet differences. RESULTS: Adjusted weight and HbA1c (n = 38) changed by -2.7 kg (95% CI -3.8, -1.5, P < .0001) and -0.91 percentage points (95% CI -1.5, -0.30, P = .005), respectively, while adjusted body fat percentage remained stable, on average (P = .21). Hypoglycaemia indices remained unchanged following adjustment (n = 28, P > .05). Variability in all outcomes, including weight change, was considerable (57.9% were re-randomized primarily due to loss of <2% body weight). No outcomes varied by diet. CONCLUSIONS: Three months of a diet, irrespective of macronutrient distribution or caloric restriction, resulted in weight loss while improving or maintaining HbA1c levels without increasing hypoglycaemia in adults with T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Obesity , Overweight , Weight Loss , Humans , Young Adult , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/complications , Glycated Hemoglobin , Hypoglycemia/complications , Obesity/complications , Obesity/therapy , Overweight/complications , Overweight/therapy
2.
Nutr Metab Cardiovasc Dis ; 33(2): 388-398, 2023 02.
Article in English | MEDLINE | ID: mdl-36586772

ABSTRACT

BACKGROUND AND AIMS: Disordered eating (DE) in type 1 diabetes (T1D) includes insulin restriction for weight loss with serious complications. Gut microbiota-derived short chain fatty acids (SCFA) may benefit host metabolism but are reduced in T1D. We evaluated the hypothesis that DE and insulin restriction were associated with reduced SCFA-producing gut microbes, SCFA, and intestinal microbial diversity in adults with T1D. METHODS AND RESULTS: We collected stool samples at four timepoints in a hypothesis-generating gut microbiome pilot study ancillary to a weight management pilot in young adults with T1D. 16S ribosomal RNA gene sequencing measured the normalized abundance of SCFA-producing intestinal microbes. Gas-chromatography mass-spectrometry measured SCFA (total, acetate, butyrate, and propionate). The Diabetes Eating Problem Survey-Revised (DEPS-R) assessed DE and insulin restriction. Covariate-adjusted and Bonferroni-corrected generalized estimating equations modeled the associations. COVID-19 interrupted data collection, so models were repeated restricted to pre-COVID-19 data. Data were available for 45 participants at 109 visits, which included 42 participants at 65 visits pre-COVID-19. Participants reported restricting insulin "At least sometimes" at 53.3% of visits. Pre-COVID-19, each 5-point DEPS-R increase was associated with a -0.34 (95% CI -0.56, -0.13, p = 0.07) lower normalized abundance of genus Anaerostipes; and the normalized abundance of Lachnospira genus was -0.94 (95% CI -1.5, -0.42), p = 0.02 lower when insulin restriction was reported "At least sometimes" compared to "Rarely or Never". CONCLUSION: DE and insulin restriction were associated with a reduced abundance of SCFA-producing gut microbes pre-COVID-19. Additional studies are needed to confirm these associations to inform microbiota-based therapies in T1D.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Feeding and Eating Disorders , Gastrointestinal Microbiome , Humans , Young Adult , Diabetes Mellitus, Type 1/diagnosis , Pilot Projects , Fatty Acids, Volatile/metabolism , Insulin , Feces
3.
Diabetes Spectr ; 36(2): 127-136, 2023 May.
Article in English | MEDLINE | ID: mdl-37193203

ABSTRACT

Regular exercise is essential to overall cardiovascular health and well-being in people with type 1 diabetes, but exercise can also lead to increased glycemic disturbances. Automated insulin delivery (AID) technology has been shown to modestly improve glycemic time in range (TIR) in adults with type 1 diabetes and significantly improve TIR in youth with type 1 diabetes. Available AID systems still require some user-initiated changes to the settings and, in some cases, significant pre-planning for exercise. Many exercise recommendations for type 1 diabetes were developed initially for people using multiple daily insulin injections or insulin pump therapy. This article highlights recommendations and practical strategies for using AID around exercise in type 1 diabetes.

4.
Diabet Med ; 39(11): e14923, 2022 11.
Article in English | MEDLINE | ID: mdl-35899591

ABSTRACT

AIM: Initiating continuous glucose monitoring (CGM) shortly after Type 1 diabetes diagnosis has glycaemic and quality of life benefits for youth with Type 1 diabetes and their families. The SARS-CoV-2 pandemic led to a rapid shift to virtual delivery of CGM initiation visits. We aimed to understand parents' experiences receiving virtual care to initiate CGM within 30 days of diagnosis. METHODS: We held focus groups and interviews using a semi-structured interview guide with parents of youth who initiated CGM over telehealth within 30 days of diagnosis during the SARS-CoV-2 pandemic. Questions aimed to explore experiences of starting CGM virtually. Groups and interviews were audio-recorded, transcribed and analysed using thematic analysis. RESULTS: Participants were 16 English-speaking parents (age 43 ± 6 years; 63% female) of 15 youth (age 9 ± 4 years; 47% female; 47% non-Hispanic White, 20% Hispanic, 13% Asian, 7% Black, 13% other). They described multiple benefits of the virtual visit including convenient access to high-quality care; integrating Type 1 diabetes care into daily life; and being in the comfort of home. A minority experienced challenges with virtual care delivery; most preferred the virtual format. Participants expressed that clinics should offer a choice of virtual or in-person to families initiating CGM in the future. CONCLUSION: Most parents appreciated receiving CGM initiation education via telehealth and felt it should be an option offered to all families. Further efforts can continue to enhance CGM initiation teaching virtually to address identified barriers.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Adolescent , Adult , Blood Glucose , Blood Glucose Self-Monitoring , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Child , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Female , Humans , Male , Middle Aged , Quality of Life , SARS-CoV-2
5.
Curr Opin Pediatr ; 34(4): 423-429, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35836400

ABSTRACT

PURPOSE OF REVIEW: The benefits of intensive diabetes management have been established by the Diabetes Control and Complications Trial. However, challenges with optimizing glycemic management in youth with type 1 diabetes (T1D) remain across pediatric clinics in the United States. This article will review our Teamwork, Targets, Technology, and Tight Control (4T) study that implements emerging diabetes technology into clinical practice with a team approach to sustain tight glycemic control from the onset of T1D and beyond to optimize clinical outcomes. RECENT FINDINGS: During the 4T Pilot study and study 1, our team-based approach to intensive target setting, education, and remote data review has led to significant improvements in hemoglobin A1c throughout the first year of T1D diagnosis in youth, as well as family and provider satisfaction. SUMMARY: The next steps include refinement of the current 4T study 1, developing a business case, and broader implementation of the 4T study. In study 2, we are including a more pragmatic cadence of remote data review and disseminating exercise education and activity tracking to both English- and Spanish-speaking families. The overall goal is to create and implement a translatable program that can facilitate better outcomes for pediatric clinics across the USA.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Child , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/therapy , Humans , Motivation , Pilot Projects , Technology , United States
6.
Pediatr Diabetes ; 23(4): 516-526, 2022 06.
Article in English | MEDLINE | ID: mdl-35297136

ABSTRACT

OBJECTIVE: To assess the relationship between mindfulness and glycemia among adolescents with type 1 diabetes (T1D) with suboptimal glycemia, and evaluate the potential mediation by ingestive behaviors, including disordered eating, and impulsivity. RESEARCH DESIGN AND METHODS: We used linear mixed models for hemoglobin A1c (HbA1c) and linear regression for continuous glucose monitoring (CGM) to study the relationship of mindfulness [Child and Adolescent Mindfulness Measure (CAMM)] and glycemia in adolescents with T1D from the 18-month Flexible Lifestyles Empowering Change (FLEX) trial. We tested for mediation of the mindfulness-glycemia relationship by ingestive behaviors, including disordered eating (Diabetes Eating Problem Survey-Revised), restrained eating, and emotional eating (Dutch Eating Behavior Questionnaire); and impulsivity (total, attentional, and motor, Barrett Impulsiveness Scale). RESULTS: At baseline, participants (n = 152) had a mean age of 14.9 ± 1.1 years and HbA1c of 9.4 ± 1.2% [79 ± 13 mmol/mol]. The majority of adolescents were non-Hispanic white (83.6%), 50.7% were female, and 73.0% used insulin pumps. From adjusted mixed models, a 5-point increase in mindfulness scores was associated with a -0.19% (95%CI -0.29, -0.08, p = 0.0006) reduction in HbA1c. We did not find statistically significant associations between mindfulness and CGM metrics. Mediation of the relationship between mindfulness and HbA1c by ingestive behaviors and impulsivity was not found to be statistically significant. CONCLUSIONS: Among adolescents with T1D and suboptimal glycemia, increased mindfulness was associated with lower HbA1c levels. Future studies may consider mindfulness-based interventions as a component of treatment for improving glycemia among adolescents with T1D, though more data are needed to assess feasibility and efficacy.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Mindfulness , Adolescent , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/psychology , Diabetes Mellitus, Type 1/therapy , Feeding and Eating Disorders/blood , Feeding and Eating Disorders/psychology , Female , Glycated Hemoglobin/analysis , Humans , Impulsive Behavior , Life Style , Male , Power, Psychological , Treatment Outcome
7.
Diabet Med ; 38(8): e14567, 2021 08.
Article in English | MEDLINE | ID: mdl-33772862

ABSTRACT

AIM: This study aimed to capture the experience of parents of youth with recent onset Type 1 diabetes who initiated use of continuous glucose monitoring (CGM) technology soon after diagnosis, which is a new practice. METHODS: Focus groups and individual interviews were conducted with parents of youth with Type 1 diabetes who had early initiation of CGM as part of a new clinical protocol. Interviewers used a semi-structured interview guide to elicit feedback and experiences with starting CGM within 30 days of diagnosis, and the benefits and barriers they experienced when adjusting to this technology. Groups and interviews were audio recorded, transcribed and analysed using content analysis. RESULTS: Participants were 16 parents (age 44.13 ± 8.43 years; 75% female; 56.25% non-Hispanic White) of youth (age 12.38 ± 4.15 years; 50% female; 50% non-Hispanic White; diabetes duration 10.35 ± 3.89 months) who initiated CGM 11.31 ± 7.33 days after diabetes diagnosis. Overall, parents reported high levels of satisfaction with starting CGM within a month of diagnosis and described a high level of reliance on the technology to help manage their child's diabetes. All participants recommended early CGM initiation for future families and were committed to continue using the technology for the foreseeable future, provided that insurance covered it. CONCLUSION: Parents experienced CGM initiation shortly after their child's Type 1 diabetes diagnosis as a highly beneficial and essential part of adjusting to living with diabetes.


Subject(s)
Blood Glucose Self-Monitoring/methods , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Early Diagnosis , Hypoglycemic Agents/administration & dosage , Parents , Adolescent , Adult , Child , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Female , Follow-Up Studies , Humans , Insulin Infusion Systems , Male , Middle Aged , Retrospective Studies , Time Factors , Young Adult
8.
Diabetologia ; 63(8): 1475-1490, 2020 08.
Article in English | MEDLINE | ID: mdl-32533229

ABSTRACT

Regular exercise is important for health, fitness and longevity in people living with type 1 diabetes, and many individuals seek to train and compete while living with the condition. Muscle, liver and glycogen metabolism can be normal in athletes with diabetes with good overall glucose management, and exercise performance can be facilitated by modifications to insulin dose and nutrition. However, maintaining normal glucose levels during training, travel and competition can be a major challenge for athletes living with type 1 diabetes. Some athletes have low-to-moderate levels of carbohydrate intake during training and rest days but tend to benefit, from both a glucose and performance perspective, from high rates of carbohydrate feeding during long-distance events. This review highlights the unique metabolic responses to various types of exercise in athletes living with type 1 diabetes. Graphical abstract.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Athletes , Blood Glucose/physiology , Exercise/physiology , Humans
9.
Diabetologia ; 63(12): 2501-2520, 2020 12.
Article in English | MEDLINE | ID: mdl-33047169

ABSTRACT

Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (i.e. before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes. Graphical abstract.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Exercise/physiology , Humans , Quality of Life
10.
Pediatr Diabetes ; 21(8): 1375-1393, 2020 12.
Article in English | MEDLINE | ID: mdl-33047481

ABSTRACT

Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes.


Subject(s)
Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Exercise , Glycemic Control/methods , Adolescent , Adult , Blood Glucose , Child , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage
12.
Pediatr Diabetes ; 20(1): 99-106, 2019 02.
Article in English | MEDLINE | ID: mdl-30467929

ABSTRACT

OBJECTIVE: To evaluate the pattern of change in blood glucose concentrations and hypoglycemia risk in response to prolonged aerobic exercise in adolescents with type 1 diabetes (T1D) that had a wide range in pre-exercise blood glucose concentrations. METHODS: Individual blood glucose responses to prolonged (~60 minutes) moderate-intensity exercise were profiled in 120 youth with T1D. RESULTS: The mean pre-exercise blood glucose concentration was 178 ± 66 mg/dL, ranging from 69 to 396 mg/dL, while the mean change in glucose during exercise was -76 ± 55 mg/dL (mean ± SD), ranging from +83 to -257 mg/dL. Only 4 of 120 youth (3%) had stable glucose levels during exercise (ie, ± ≤10 mg/dL), while 4 (3%) had a rise in glucose >10 mg/dL, and the remaining (93%) had a clinically significant drop (ie, >10 mg/dL). A total of 53 youth (44%) developed hypoglycemia (≤70 mg/dL) during exercise. The change in glucose was negatively correlated with the pre-exercise glucose concentration (R2 = 0.44, P < 0.001), and tended to be greater in those on multiple daily insulin injections (MDI) vs continuous subcutaneous insulin infusion (CSII) (-98 ± 15 vs -65 ± 7 mg/dL, P = 0.05). No other collected variables appeared to predict the change in glucose including age, weight, height, body mass index, disease duration, daily insulin dose, HbA1c , or sex. CONCLUSION: Youth with T1D have variable glycemic responses to prolonged aerobic exercise, but this variability is partially explained by their pre-exercise blood glucose levels. When no implementation strategies are in place to limit the drop in glycemia, the incidence of exercise-associated hypoglycemia is ~44% and having a high pre-exercise blood glucose concentration is only marginally protective.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Exercise/physiology , Hypoglycemia/etiology , Adolescent , Blood Glucose Self-Monitoring , Child , Cohort Studies , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Exercise Test , Female , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Hypoglycemia/blood , Individuality , Insulin/administration & dosage , Insulin/adverse effects , Insulin Infusion Systems , Male , Retrospective Studies , Risk Factors
15.
J Diabetes Sci Technol ; 18(4): 787-794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629861

ABSTRACT

BACKGROUND: Standardized reporting of continuous glucose monitoring (CGM) metrics does not provide extra weighting for very high or very low glucose, despite their distinct clinical significance, and thus may underestimate glycemic risk in people with type 1 diabetes (T1D) during exercise. Glycemia Risk Index (GRI) is a novel composite metric incorporating clinician-validated extra weighting for glycemic extremes, which may provide a novel summary index of glycemia risk around exercise. METHODS: Adults (≥18 years) in the T1D EXercise Initiative study wore CGM and activity trackers for four weeks. For this analysis, exercise days were defined as 24 hours following ≥20 minutes of exercise, with no other exercise in the 24-hour period. Sedentary days were defined as any 24 hours with no recorded exercise within that period or the preceding 24 hours. Linear mixed-effects regression was used to evaluate exercise effects on GRI and CGM metrics within 24 hours postexercise. RESULTS: In 408 adults with T1D with >70% CGM and activity data, GRI on exercise (N = 3790) versus sedentary days (N = 1865) was significantly lower (mean [SD]: 29.9 [24.0] vs 34.0 [26.1], respectively, absolute mean difference -1.70 [-2.73, -0.67], P < .001), a ~5% reduction in glycemic risk. Percent time in range (TIR; 70-180 mg/dL) increased on exercise days (absolute mean difference 2.67 [1.83, 3.50], P < .001), as did time below range (TBR; relative mean difference 1.17 [1.12, 1.22], P < .001), while time above range (TAR) decreased (relative mean difference 0.84 [0.79, 0.88], P < .001). CONCLUSIONS: Glycemia Risk Index improved on exercise versus sedentary days, despite increased TBR, which is weighted most heavily in the GRI calculation, due to a robust reduction in TAR.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 1 , Exercise , Humans , Diabetes Mellitus, Type 1/blood , Adult , Male , Female , Exercise/physiology , Blood Glucose/analysis , Middle Aged , Risk Assessment , Continuous Glucose Monitoring
16.
J Diabetes Sci Technol ; : 19322968241248404, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785359

ABSTRACT

This narrative review assesses the use of automated insulin delivery (AID) systems in managing persons with type 1 diabetes (PWD) in the pediatric population. It outlines current research, the differences between various AID systems currently on the market and the challenges faced, and discusses potential opportunities for further advancements within this field. Furthermore, the narrative review includes various expert opinions on how different AID systems can be used in the event of challenges with rapidly changing insulin requirements. These include examples, such as during illness with increased or decreased insulin requirements and during physical activity of different intensities or durations. Case descriptions give examples of scenarios with added user-initiated actions depending on the type of AID system used. The authors also discuss how another AID system could have been used in these situations.

17.
Can J Diabetes ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972477

ABSTRACT

INTRODUCTION: Evidence suggests that glucose levels in menstruating females with type 1 diabetes change throughout the menstrual cycle, reaching a peak during the luteal phase. The Type 1 Diabetes Exercise Initiative (T1DEXI) study provided the opportunity to assess glycemic metrics between early and late phases of the menstrual cycle, and whether differences could be explained by exercise, insulin, and carbohydrate intake. RESEARCH DESIGN AND METHODS: One hundred and sixty two adult females were included in the analysis. Glycemic metrics, carbohydrate intake, insulin requirements, and exercise habits during the early vs. late phases of the menstrual cycles (i.e. 2-4 days after vs. 2-4 days before reported menstruation start date) were compared. RESULTS: Mean glucose increased from 8.2±1.5 mmol/L (148±27 mg/dL) during the early follicular phase to 8.6±1.6 mmol/L (155±29 mg/dL) during the late luteal phase (p<0.001). Mean percent time-in-range (3.9-10.0 mmol/L [70-180 mg/dL] ) decreased from 73±17% to 70±18% (p=0.002), and median percent time >10.0 mmol/L (>180 mg/dL) increased from 21% to 23% (p<0.001). Median total daily insulin requirements increased from 37.4 units during the early follicular to 38.5 units during the late luteal phase (p=0.02) and mean daily carbohydrate consumption increased slightly from 127±47 g to 133±47 g (p=0.05), but the difference in mean glucose during early follicular vs. late luteal phase was not explained by differences in exercise duration, total daily insulin units, or reported carbohydrate intake. CONCLUSIONS: Glucose levels during the late luteal phase were higher than the early follicular phase of the menstrual cycle. These glycemic changes suggest that glucose management for females with type 1 diabetes may need to be fine-tuned within the context of their menstrual cycles.

18.
Diabetes Technol Ther ; 26(S3): 84-96, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377316

ABSTRACT

The physical and psychological benefits of exercise are particularly pertinent to people with type 1 diabetes (T1D). The variability in subcutaneous insulin absorption and the delay in offset and onset in glucose lowering action impose limitations, given the rapidly varying insulin requirements with exercise. Simultaneously, there are challenges to glucose monitoring. Consequently, those with T1D are less likely to exercise because of concerns regarding glucose instability. While glucose control with exercise can be enhanced using automated insulin delivery (AID), all commercially available AID systems remain limited by the pharmacokinetics of subcutaneous insulin delivery. Although glycemic responses may vary with exercises of differing intensities and durations, the principles providing the foundation for guidelines include minimization of insulin on board before exercise commencement, judicious and timely carbohydrate supplementation, and when possible, a reduction in insulin delivered in anticipation of planned exercise. There is an increasing body of evidence in support of superior glucose control with AID over manual insulin dosing in people in T1D who wish to exercise. The MiniMed™ 780G AID system varies basal insulin delivery with superimposed automated correction boluses. It incorporates a temporary (elevated glucose) target of 8.3 mmol/L (150 mg/dL) and when it is functioning, the autocorrection boluses are stopped. As the device has recently become commercially available, there are limited data assessing glucose control with the MiniMed™ 780G under exercise conditions. Importantly, when exercise was planned and implemented within consensus guidelines, %time in range and %time below range targets were met. A practical approach to exercising with the device is provided with illustrative case studies. While there are limitations to spontaneity imposed on any AID device due to the pharmacokinetics associated with the subcutaneous delivery of current insulin formulations, the MiniMed™ 780G system provides people with T1D an excellent option for exercising safely if the appropriate strategies are implemented.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Humans , Insulin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Blood Glucose , Blood Glucose Self-Monitoring , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use
19.
NEJM Evid ; 3(2): EVIDoa2300164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38320487

ABSTRACT

BACKGROUND: Digital health interventions may be optimized before evaluation in a randomized clinical trial. Although many digital health interventions are deployed in pilot studies, the data collected are rarely used to refine the intervention and the subsequent clinical trials. METHODS: We leverage natural variation in patients eligible for a digital health intervention in a remote patient-monitoring pilot study to design and compare interventions for a subsequent randomized clinical trial. RESULTS: Our approach leverages patient heterogeneity to identify an intervention with twice the estimated effect size of an unoptimized intervention. CONCLUSIONS: Optimizing an intervention and clinical trial based on pilot data may improve efficacy and increase the probability of success. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT04336969.)


Subject(s)
Research Design , Pilot Projects
20.
J Diabetes Complications ; 38(1): 108651, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043358

ABSTRACT

AIMS: This pilot study delivered a comprehensive exercise education intervention to youth with new-onset type 1 diabetes (T1D) and their parents to increase knowledge and confidence with physical activity (PA) shortly after diagnosis. METHODS: Youth initiated continuous glucose monitoring (CGM) and PA trackers within 1 month of diagnosis. Youth and their parents received the 4-session intervention over 12 months. Participants completed self-report questionnaires at baseline, 6- and 12-months. Surveys were analyzed using linear mixed effects models. Semi-structured interviews and focus groups explored experiences with the exercise education intervention. Groups and interviews were audio-recorded, transcribed, and analyzed using content analysis. RESULTS: A total of 16 parents (aged 46 ± 7 years; 88 % female; 67 % non-Hispanic White) and 17 youth (aged 14 ± 2 years; 41 % female; 65 % non-Hispanic White) participated. Worry about hypoglycemia did not worsen throughout the study duration. Parents and youth reported increased knowledge and confidence in managing T1D safely and preventing hypoglycemia during PA following receiving the tailored exercise education intervention. CONCLUSION: This study assessed a novel structured exercise education program for youth and their parents shortly following T1D diagnosis. These results support the broad translation and acceptability of a structured exercise education program in new-onset T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Humans , Adolescent , Female , Male , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/therapy , Blood Glucose , Blood Glucose Self-Monitoring , Pilot Projects , Exercise , Hypoglycemia/prevention & control , Parents
SELECTION OF CITATIONS
SEARCH DETAIL