Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534641

ABSTRACT

The agriculture and food (agrifood) sectors play key roles in the emergence, spread, and containment of antimicrobial resistance (AMR). Pakistan's first National Action Plan (NAP) on AMR was developed to guide One Health interventions to combat AMR through 2017-2022. To improve subsequent iterations, we assessed the implementation of Pakistan's NAP in the agrifood sectors (NAPag) in October 2022, using the Progressive Management Pathway on AMR tool developed by the Food and Agriculture Organization of the United Nations (FAO). The assessment tool addressed four crucial focus areas of the NAPag: governance, awareness, evidence, and practices. Each focus area contains multiple topics, which involve four sequential stages of activities to progressively achieve systematic management of AMR risk in the agrifood sectors. High-level representatives of the NAPag stakeholders provided information for the assessment through pre-event documentary review and workshop discussions. The assessment results showed that Pakistan's NAPag had an overall moderate coverage (59%) of the anticipated activities. Gaps were particularly notable in strengthening governance, good practices, and interventions in non-livestock sectors. Furthermore, only 12% of the evaluated activities were fully executed and documented, consistently remaining at the planning and piloting stages in the livestock sector across all the examined topics. Insufficient attention to non-livestock sectors, inadequate regulation and enforcement capacity, and resource constraints have hindered scalable and sustainable interventions under the current plan. This assessment provides valuable insights to strengthen the inclusiveness and contribution of the agrifood sectors in the next NAP iteration. In the short-to-medium term, strategic prioritization is necessary to optimize the use of limited resources and target the most critical gaps, such as improving awareness among key stakeholders and fortifying regulations for prudent antimicrobial use. In the long term, integration of AMR into the country's broader health, development, and agricultural transformation agendas will be needed to generate sustainable benefits.

2.
Prev Vet Med ; 212: 105836, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634489

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) and irrational antimicrobial usage (AMU) are a global problem, particularly evident in low- and middle-income countries including Pakistan. Our study aimed to assess the knowledge, attitudes and prescribing practices (KAP) of field veterinarians regarding AMR and AMU. METHODS: A questionnaire-based online survey was conducted using Google forms to collect data on AMR and AMU from veterinary practitioners in Pakistan between July 25, 2020, and February 2, 2021. The questionnaire was comprised of four sections: 1) Demographic information of the respondents, 2) Knowledge about AMR, and AMU, 3) Antibiotic prescribing behavior, attitudes and influencing drivers and 4) Practices of respondents about AMU and drug disposal. RESULTS: A total of 545 participants (Male 84%, Female 16%) completed the survey. The respondents' qualification (P = 0.008), gender (P = 0.007) and type of practitioner (P < 0.001) had a significant association with the mean knowledge score about AMR. Most of the veterinarians had never attended any training, symposium, or awareness session on AMR (63%) and methods to detect antibiotic residues (71%). Participating veterinarians frequently included "critically important antimicrobials" in their treatment regimens. Most veterinarians (60%) prescribed antibiotics for viral diseases. Our study showed that about 44% of veterinarians disposed of expired drugs in the garbage. Antibiotics were prescribed as mass medication and for prophylaxis by 59% and 33% of the veterinarians, respectively, while about 60% of the veterinarians prescribed antibiotics starting with double doses in their treatment regimens. Importantly, only 4% of the veterinarians recognized the concept of One Health. Male veterinarians had higher odds of prescribing mass medication (OR=3.07, P < 0.001) and use of antibiotics for disease prophylaxis (OR=2.31, P = 0.002) than females, whereas improper disposal of expired antimicrobials (OR=2.12, P = 0.003) was more common in female veterinarians. Government veterinarians had 2 (OR=1.95, P = 0.016) and 3 (OR=3.05, P < 0.001) times higher odds to prescribe antibiotics prophylactically and for mass treatments, respectively compared to full-time private veterinarians. CONCLUSION: Our study identifies key factors influencing veterinarians' decision about antimicrobial prescription and highlights important shortcomings such as lack of training on rational use of antimicrobials, frequent use of antimicrobials for mass medication and prophylaxis, widespread use of critically important antimicrobials, and improper disposal practices. There is a dire need to improve knowledge of veterinary practitioners regarding AMR and to adopt a One Health approach to rationalize AMU at the national level in line with the regional and international guidelines.


Subject(s)
Anti-Infective Agents , Veterinarians , Male , Female , Animals , Humans , Anti-Bacterial Agents/therapeutic use , Pakistan , Drug Resistance, Bacterial , Anti-Infective Agents/therapeutic use , Perception
3.
Antibiotics (Basel) ; 10(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069928

ABSTRACT

Antimicrobial resistance (AMR) is a global health challenge and antimicrobial use (AMU) in the livestock sector has been considered as one of the contributing factors towards the development of AMR in bacteria. This study summarizes the results of a point prevalence survey conducted to monitor farm-level AMU in commercial broiler chicken farms in Punjab and Khyber Pakhtunkhwa (KPK) provinces of Pakistan. A cross-sectional study was conducted to quantify AMU and to check seasonal variations of AMU in 12 commercial broiler chicken farms (six from each province) during the summer and winter seasons of the year 2020-2021. AMU was recorded using three AMU metrics: kg, mg per population correction unit (mg/PCU), and mg/kg of final flock weight. A total of 22 antimicrobial drugs (348.59 kg) were used for therapeutic or prophylactic purposes in surveyed broiler chicken farms. The total combined AMU for all the broiler chicken farms was 462.57 mg/PCU. The use of most of the antimicrobials increased during winter flocks compared to summer. The top three antimicrobial drugs used during the summer were neomycin (111.39 mg/PCU), doxycycline (91.91 mg/PCU), and tilmicosin (77.22 mg/PCU), whereas doxycycline (196.81 mg/PCU), neomycin (136.74 mg/PCU), and amoxicillin (115.04 mg/PCU) during the winter. Overall, 60% of the antibiotics used in broiler chicken were critically important antimicrobial classes (CIA) for human medicine as characterized by the World Health Organization. Our findings showed high AMU in broiler chicken production and a call for urgent actions to regulate CIA use in food animals in Pakistan. This baseline survey is critical for the design and implementation of a subsequent national level AMU surveys that can include additional farming types, animals' species, and geographical locations over a longer period of time.

4.
Comput Math Methods Med ; 2020: 7841941, 2020.
Article in English | MEDLINE | ID: mdl-33294003

ABSTRACT

Simulation modeling has become common for estimating the spread of highly contagious animal diseases. Several models have been developed to mimic the spread of foot-and-mouth disease (FMD) in specific regions or countries, conduct risk assessment, analyze outbreaks using historical data or hypothetical scenarios, assist in policy decisions during epidemics, formulate preparedness plans, and evaluate economic impacts. Majority of the available FMD simulation models were designed for and applied in disease-free countries, while there has been limited use of such models in FMD endemic countries. This paper's objective was to report the findings from a study conducted to review the existing published original research literature on spatially explicit stochastic simulation (SESS) models of FMD spread, focusing on assessing these models for their potential use in endemic settings. The goal was to identify the specific components of endemic FMD needed to adapt these SESS models for their potential application in FMD endemic settings. This systematic review followed the PRISMA guidelines, and three databases were searched, which resulted in 1176 citations. Eighty citations finally met the inclusion criteria and were included in the qualitative synthesis, identifying nine unique SESS models. These SESS models were assessed for their potential application in endemic settings. The assessed SESS models can be adapted for use in FMD endemic countries by modifying the underlying code to include multiple cocirculating serotypes, routine prophylactic vaccination (RPV), and livestock population dynamics to more realistically mimic the endemic characteristics of FMD. The application of SESS models in endemic settings will help evaluate strategies for FMD control, which will improve livestock health, provide economic gains for producers, help alleviate poverty and hunger, and will complement efforts to achieve the Sustainable Development Goals.


Subject(s)
Endemic Diseases/prevention & control , Endemic Diseases/veterinary , Foot-and-Mouth Disease/prevention & control , Models, Biological , Animals , Computational Biology , Computer Simulation , Foot-and-Mouth Disease/epidemiology , Mathematical Concepts , Stochastic Processes
5.
Emerg Microbes Infect ; 9(1): 2222-2235, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32967592

ABSTRACT

Coronaviruses (CoVs) are enveloped, positive sense, single-stranded RNA viruses. The viruses have adapted to infect a large number of animal species, ranging from bats to camels. At present, seven CoVs infect humans, of which Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus Disease 2019 (COVID-19) in humans. Since its emergence in late 2019, SARS-CoV-2 has spread rapidly across the globe. Healthcare systems around the globe have been stretched beyond their limits posing new challenges to emergency healthcare services and critical care. The outbreak continues to jeopardize human health, social life and economy. All known human CoVs have zoonotic origins. Recent detection of SARS-CoV-2 in pet, zoo and certain farm animals has highlighted its potential for reverse zoonosis. This scenario is particularly alarming, since these animals could be potential reservoirs for secondary zoonotic infections. In this article, we highlight interspecies SARS-CoV-2 infections and focus on the reverse zoonotic potential of this virus. We also emphasize the importance of potential secondary zoonotic events and the One-Health and One-World approach to tackle such future pandemics.


Subject(s)
Coronavirus Infections/virology , Pneumonia, Viral/virology , Zoonoses/virology , Animals , Betacoronavirus/physiology , COVID-19 , Camelus/virology , Chiroptera/virology , Coronavirus Infections/epidemiology , Global Health , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL