ABSTRACT
We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.
Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Female , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methodsABSTRACT
A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.
Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Animals , Humans , Administration, Intranasal , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cytokines/immunology , Immunity, Mucosal/immunology , Immunization, Secondary/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Injections, Intramuscular , Killer Cells, Natural/immunology , Lung/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Trachea/immunology , Trachea/virologyABSTRACT
The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.
Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , SARS-CoV-2/immunology , Ad26COVS1 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/pathology , Female , Macaca mulatta/virology , Male , Nose/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Virus ReplicationABSTRACT
A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.
Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Macaca mulatta , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines , Disease Models, Animal , Female , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Macaca mulatta/virology , Male , SARS-CoV-2 , Vaccination , Viral LoadABSTRACT
The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vaccine "MARVAC" consortium representing leaders in the field of vaccine research and development aiming to facilitate a rapid response to this infectious disease threat. Here, we discuss current progress, challenges, and future directions for MARV vaccines.
Subject(s)
Marburg Virus Disease , Marburgvirus , Viral Vaccines , Animals , Humans , Marburg Virus Disease/prevention & controlABSTRACT
BACKGROUND: Amygdala and dorsal anterior cingulate cortex responses to facial emotions have shown promise in predicting treatment response in medication-free major depressive disorder (MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more chronic, difficult-to-treat forms of MDD. METHODS: Forty-five people with current MDD who had not responded to ⩾2 serotonergic antidepressants (n = 42, meeting pre-defined fMRI minimum quality thresholds) were enrolled and followed up over four months of standard primary care. Prior to medication review, subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent effects for sad v. happy faces from two pre-registered a priori defined regions: bilateral amygdala and dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage change on the self-reported Quick Inventory of Depressive Symptomatology (16-item). RESULTS: We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral amygdala activation for sad v. happy faces predicted favorable clinical outcomes (rs[38] = 0.40, p = 0.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex activation (rs[38] = 0.18, p = 0.29), nor when using voxel-based whole-brain analyses (voxel-based Family-Wise Error-corrected p < 0.05). Predictive effects were mainly driven by the right amygdala whose response to happy faces was reduced in patients with higher anxiety levels. CONCLUSIONS: We confirmed the prediction that a lower amygdala response to negative v. positive facial expressions might be an adaptive neural signature, which predicts subsequent symptom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala responses.
ABSTRACT
BACKGROUND: Overgeneralised self-blame and worthlessness are key symptoms of major depressive disorder (MDD) and have previously been associated with self-blame-selective changes in connectivity between right superior anterior temporal lobe (rSATL) and subgenual frontal cortices. Another study showed that remitted MDD patients were able to modulate this neural signature using functional magnetic resonance imaging (fMRI) neurofeedback training, thereby increasing their self-esteem. The feasibility and potential of using this approach in symptomatic MDD were unknown. METHOD: This single-blind pre-registered randomised controlled pilot trial probed a novel self-guided psychological intervention with and without additional rSATL-posterior subgenual cortex (BA25) fMRI neurofeedback, targeting self-blaming emotions in people with insufficiently recovered MDD and early treatment-resistance (n = 43, n = 35 completers). Participants completed three weekly self-guided sessions to rebalance self-blaming biases. RESULTS: As predicted, neurofeedback led to a training-induced reduction in rSATL-BA25 connectivity for self-blame v. other-blame. Both interventions were safe and resulted in a 46% reduction on the Beck Depression Inventory-II, our primary outcome, with no group differences. Secondary analyses, however, revealed that patients without DSM-5-defined anxious distress showed a superior response to neurofeedback compared with the psychological intervention, and the opposite pattern in anxious MDD. As predicted, symptom remission was associated with increases in self-esteem and this correlated with the frequency with which participants employed the psychological strategies in daily life. CONCLUSIONS: These findings suggest that self-blame-rebalance neurofeedback may be superior over a solely psychological intervention in non-anxious MDD, although further confirmatory studies are needed. Simple self-guided strategies tackling self-blame were beneficial, but need to be compared against treatment-as-usual in further trials. https://doi.org/10.1186/ISRCTN10526888.
Subject(s)
Depressive Disorder, Major , Neurofeedback , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Pilot Projects , Neurofeedback/methods , Depression , Magnetic Resonance Imaging , Single-Blind MethodABSTRACT
Criteria for treatment-resistant depression (TRD) and partially responsive depression (PRD) as subtypes of major depressive disorder (MDD) are not unequivocally defined. In the present document we used a Delphi-method-based consensus approach to define TRD and PRD and to serve as operational criteria for future clinical studies, especially if conducted for regulatory purposes. We reviewed the literature and brought together a group of international experts (including clinicians, academics, researchers, employees of pharmaceutical companies, regulatory bodies representatives, and one person with lived experience) to evaluate the state-of-the-art and main controversies regarding the current classification. We then provided recommendations on how to design clinical trials, and on how to guide research in unmet needs and knowledge gaps. This report will feed into one of the main objectives of the EUropean Patient-cEntric clinicAl tRial pLatforms, Innovative Medicines Initiative (EU-PEARL, IMI) MDD project, to design a protocol for platform trials of new medications for TRD/PRD.
Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Depression , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , HumansABSTRACT
BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.
Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Prospective Studies , Reproducibility of Results , Brain , Neuroimaging , Magnetic Resonance Imaging/methods , Artificial IntelligenceABSTRACT
The potential impact on mental health of home schooling and social isolation due to COVID-19 lockdowns has led to widespread concern, particularly for adolescents. However, studies including pre-pandemic data from longitudinal cohorts with an assessment of the longer-term impact of the Covid-19 pandemic beyond the first months of 2020 are scarce. This longitudinal study of 1534 adolescents attending a secondary school in Hunan province investigated self-reported symptoms of anxiety and depression using two validated scales (Screen for Child Anxiety Related Disorders, Child Mood and Feelings Questionnaire) at six time points before, during, and after the 2020 national lockdown restrictions in China. Perceived COVID-related stress was assessed by an author-developed scale at two timepoints during the lockdown. We investigated trends in symptoms over time with a fixed effects model and multiple imputations of missing data. Counter to our expectations, depressive and anxiety symptoms were reduced during the 2020 lockdown relative to pre-lockdown (depression: b = - 3.37, SE = 0.345, Cohen's d = - 0.25, p < 0.0001; anxiety: b = - 4.55, SE = 0.382, Cohen's d = - 0.30, p < 0.0001). Symptoms remained significantly reduced even after lockdown restrictions eased. Higher symptom levels during lockdown were associated with greater self-reported COVID-related stress (depression: b = 0.11, SE = 0.026, p < 0.0001; anxiety: b = 0.11, SE = 0.036, p < 0.0001). Although COVID-related stresses correlated with higher levels of anxiety and depression, the lockdown period was associated with improved symptom levels in the adolescents taking part in our study. School closures may have improved the mental health of adolescents in China. We speculate this beneficial effect of lockdown can be explained by the adverse effects of attending school itself such as exposure to bullying and achievement pressures.
ABSTRACT
Vaccines are being rapidly developed with the goal of ending the SARS-CoV-2 pandemic. However, the extent to which SARS-CoV-2 vaccination induces serum responses that cross-react with other coronaviruses remains poorly studied. Here we define serum profiles in rhesus macaques after vaccination with DNA or Ad26 based vaccines expressing SARS-CoV-2 Spike protein followed by SARS-CoV-2 challenge, or SARS-CoV-2 infection alone. Analysis of serum responses showed robust reactivity to the SARS-CoV-2 full-length Spike protein and receptor binding domain (RBD), both included in the vaccine. However, serum cross-reactivity to the closely related sarbecovirus SARS-CoV-1 Spike and RBD, was reduced. Reactivity was also measured to the distantly related common cold alpha-coronavirus, 229E and NL63, and beta-coronavirus, OC43 and HKU1, Spike proteins. Using SARS-COV-2 and SARS-CoV-1 lentivirus based pseudoviruses, we show that neutralizing antibody responses were predominantly SARS-CoV-2 specific. These data define patterns of cross-reactive binding and neutralizing serum responses induced by SARS-CoV-2 infection and vaccination in rhesus macaques. Our observations have important implications for understanding polyclonal responses to SARS-CoV-2 Spike, which will facilitate future CoV vaccine assessment and development.ImportanceThe rapid development and deployment of SARS-CoV-2 vaccines has been unprecedented. In this study, we explore the cross-reactivity of SARS-CoV-2 specific antibody responses to other coronaviruses. By analyzing responses from NHPs both before and after immunization with DNA or Ad26 vectored vaccines, we find patterns of cross reactivity that mirror those induced by SARS-CoV-2 infection. These data highlight the similarities between infection and vaccine induced humoral immunity for SARS-CoV-2 and cross-reactivity of these responses to other CoVs.
ABSTRACT
BACKGROUND: Subgenual cingulate cortex (SCC) responses to self-blaming emotion-evoking stimuli were previously found in individuals prone to self-blame with and without a history of major depressive disorder (MDD). This suggested SCC activation reflects self-blaming emotions such as guilt, which are central to models of MDD vulnerability. METHOD: Here, we re-examined these hypotheses in an independent larger sample. A total of 109 medication-free participants (70 with remitted MDD and 39 healthy controls) underwent fMRI whilst judging self- and other-blaming emotion-evoking statements. They also completed validated questionnaires of proneness to self-blaming emotions including those related to internal (autonomy) and external (sociotropy) evaluation, which were subjected to factor analysis. RESULTS: An interaction between group (remitted MDD v. Control) and condition (self- v. other-blame) was observed in the right SCC (BA24). This was due to higher SCC signal for self-blame in remitted MDD and higher other-blame-selective activation in Control participants. Across the whole sample, extracted SCC activation cluster averages for self- v. other-blame were predicted by a regression model which included the reliable components derived from our factor analysis of measures of proneness to self-blaming emotions. Interestingly, this prediction was solely driven by autonomy/self-criticism, and adaptive guilt factors, with no effect of sociotropy/dependency. CONCLUSIONS: Despite confirming the prediction of SCC activation in self-blame-prone individuals and those vulnerable to MDD, our results suggest that SCC activation reflects blame irrespective of where it is directed rather than selective for self. We speculate that self-critical individuals have more extended SCC representations for blame in the context of self-agency.
Subject(s)
Depressive Disorder, Major , Depression , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/psychology , Emotions , Guilt , Humans , Individuality , Magnetic Resonance ImagingABSTRACT
BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.
Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Adenoviridae/immunology , Adult , Animals , Double-Blind Method , Female , Humans , Male , Mice , United States , Zika Virus/immunology , Zika Virus Infection/immunologyABSTRACT
Humans are intrinsically motivated to bond with others. The ability to experience affiliative emotions (such as affection/tenderness, sexual attraction, and admiration/awe) may incentivize and promote these affiliative bonds. Here, we interrogate the role of the critical reward circuitry, especially the Nucleus Accumbens (NAcc) and the septo-hypothalamic region, in the anticipation of and response to affiliative rewards using a novel incentive delay task. During Functional Magnetic Resonance Imaging (FMRI), participants (n = 23 healthy humans; 14 female) anticipated and watched videos involving affiliative (tenderness, erotic desire, and awe) and nonaffiliative (i.e., food) rewards, as well as neutral scenes. On the one hand, anticipation of both affiliative and nonaffiliative rewards increased activity in the NAcc, anterior insula, and supplementary motor cortex, but activity in the amygdala and the ventromedial prefrontal cortex (vmPFC) increased in response to reward outcomes. On the other hand, affiliative rewards more specifically increased activity in the septo-hypothalamic area. Moreover, NAcc activity during anticipation correlated with positive arousal for all rewards, whereas septo-hypothalamic activity during the outcome correlated with positive arousal and motivation for subsequent re-exposure only for affiliative rewards. Together, these findings implicate a general appetitive response in the NAcc to different types of rewards but suggests a more specific response in the septo-hypothalamic region in response to affiliative rewards outcomes. This work also presents a new task for distinguishing between neural responses to affiliative and non-affiliative rewards.
Subject(s)
Anticipation, Psychological/physiology , Corpus Striatum/diagnostic imaging , Reward , Septum of Brain/diagnostic imaging , Adult , Arousal/physiology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motivation , Nucleus Accumbens/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Young AdultABSTRACT
BACKGROUND: Pharmacological augmentation is a recommended strategy for patients with treatment-resistant depression. A range of guidelines provide advice on treatment selection, prescription, monitoring and discontinuation, but variation in the content and quality of guidelines may limit the provision of objective, evidence-based care. This is of importance given the side effect burden and poorer long-term outcomes associated with polypharmacy and treatment-resistant depression. This review provides a definitive overview of pharmacological augmentation recommendations by assessing the quality of guidelines for depression and comparing the recommendations made. METHODS: A systematic literature search identified current treatment guidelines for depression published in English. Guidelines were quality assessed using the Appraisal of Guidelines for Research and Evaluation II tool. Data relating to the prescription of pharmacological augmenters were extracted from those developed with sufficient rigor, and the included recommendations compared. RESULTS: Total of 1696 records were identified, 19 guidelines were assessed for quality, and 10 were included. Guidelines differed in their quality, the stage at which augmentation was recommended, the agents included, and the evidence base cited. Lithium and atypical antipsychotics were recommended by all 10, though the specific advice was not consistent. Of the 15 augmenters identified, no others were universally recommended. CONCLUSIONS: This review provides a comprehensive overview of current pharmacological augmentation recommendations for major depression and will support clinicians in selecting appropriate treatment guidance. Although some variation can be accounted for by date of guideline publication, and limited evidence from clinical trials, there is a clear need for greater consistency across guidelines to ensure patients receive consistent evidence-based care.
Subject(s)
Antipsychotic Agents/administration & dosage , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Drug Prescriptions/standards , Practice Guidelines as Topic/standards , Drug Synergism , Drug Therapy, Combination , HumansABSTRACT
BACKGROUND: More than 1·8 million new cases of HIV-1 infection were diagnosed worldwide in 2016. No licensed prophylactic HIV-1 vaccine exists. A major limitation to date has been the lack of direct comparability between clinical trials and preclinical studies. We aimed to evaluate mosaic adenovirus serotype 26 (Ad26)-based HIV-1 vaccine candidates in parallel studies in humans and rhesus monkeys to define the optimal vaccine regimen to advance into clinical efficacy trials. METHODS: We conducted a multicentre, randomised, double-blind, placebo-controlled phase 1/2a trial (APPROACH). Participants were recruited from 12 clinics in east Africa, South Africa, Thailand, and the USA. We included healthy, HIV-1-uninfected participants (aged 18-50 years) who were considered at low risk for HIV-1 infection. We randomly assigned participants to one of eight study groups, stratified by region. Participants and investigators were blinded to the treatment allocation throughout the study. We primed participants at weeks 0 and 12 with Ad26.Mos.HIV (5â×â1010 viral particles per 0·5 mL) expressing mosaic HIV-1 envelope (Env)/Gag/Pol antigens and gave boosters at weeks 24 and 48 with Ad26.Mos.HIV or modified vaccinia Ankara (MVA; 108 plaque-forming units per 0·5 mL) vectors with or without high-dose (250 µg) or low-dose (50 µg) aluminium adjuvanted clade C Env gp140 protein. Those in the control group received 0·9% saline. All study interventions were administered intramuscularly. Primary endpoints were safety and tolerability of the vaccine regimens and Env-specific binding antibody responses at week 28. Safety and immunogenicity were also assessed at week 52. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. We also did a parallel study in rhesus monkeys (NHP 13-19) to assess the immunogenicity and protective efficacy of these vaccine regimens against a series of six repetitive, heterologous, intrarectal challenges with a rhesus peripheral blood mononuclear cell-derived challenge stock of simian-human immunodeficiency virus (SHIV-SF162P3). The APPROACH trial is registered with ClinicalTrials.gov, number NCT02315703. FINDINGS: Between Feb 24, 2015, and Oct 16, 2015, we randomly assigned 393 participants to receive at least one dose of study vaccine or placebo in the APPROACH trial. All vaccine regimens demonstrated favourable safety and tolerability. The most commonly reported solicited local adverse event was mild-to-moderate pain at the injection site (varying from 69% to 88% between the different active groups vs 49% in the placebo group). Five (1%) of 393 participants reported at least one grade 3 adverse event considered related to the vaccines: abdominal pain and diarrhoea (in the same participant), increased aspartate aminotransferase, postural dizziness, back pain, and malaise. The mosaic Ad26/Ad26 plus high-dose gp140 boost vaccine was the most immunogenic in humans; it elicited Env-specific binding antibody responses (100%) and antibody-dependent cellular phagocytosis responses (80%) at week 52, and T-cell responses at week 50 (83%). We also randomly assigned 72 rhesus monkeys to receive one of five different vaccine regimens or placebo in the NHP 13-19 study. Ad26/Ad26 plus gp140 boost induced similar magnitude, durability, and phenotype of immune responses in rhesus monkeys as compared with humans and afforded 67% protection against acquisition of SHIV-SF162P3 infection (two-sided Fisher's exact test p=0·007). Env-specific ELISA and enzyme-linked immunospot assay responses were the principal immune correlates of protection against SHIV challenge in monkeys. INTERPRETATION: The mosaic Ad26/Ad26 plus gp140 HIV-1 vaccine induced comparable and robust immune responses in humans and rhesus monkeys, and it provided significant protection against repetitive heterologous SHIV challenges in rhesus monkeys. This vaccine concept is currently being evaluated in a phase 2b clinical efficacy study in sub-Saharan Africa (NCT03060629). FUNDING: Janssen Vaccines & Prevention BV, National Institutes of Health, Ragon Institute of MGH, MIT and Harvard, Henry M Jackson Foundation for the Advancement of Military Medicine, US Department of Defense, and International AIDS Vaccine Initiative.
Subject(s)
AIDS Vaccines/administration & dosage , HIV-1/immunology , AIDS Vaccines/adverse effects , Abdominal Pain/etiology , Adenoviridae , Adolescent , Adult , Animals , Aspartate Aminotransferases/analysis , Back Pain/etiology , Diarrhea/etiology , Dizziness/etiology , Dose-Response Relationship, Drug , Double-Blind Method , Fatigue/etiology , Genetic Vectors , Healthy Volunteers , Humans , Immunity, Cellular , Immunity, Humoral , Macaca mulatta , Middle Aged , Young AdultABSTRACT
The cerebral correlates of altruistic decisions have increasingly attracted the interest of neuroscientists. To date, investigations on the neural underpinnings of altruistic decisions have primarily been conducted in healthy adults undergoing functional neuroimaging as they engaged in decisions to punish third parties. The chief purpose of the present study was to investigate altruistic decisions following focal brain damage with a novel altruistic decision task. In contrast to studies that have focused either on altruistic punishment or donation, the Altruistic Decision Task allows players to anonymously punish or donate to 30 charitable organizations involved with salient societal issues such as abortion, nuclear energy and civil rights. Ninety-four Vietnam War veterans with variable patterns of penetrating traumatic brain injury and 28 healthy veterans who also served in combat participated in the study as normal controls. Participants were asked to invest $1 to punish or reward real societal organizations, or keep the money for themselves. Associations between lesion distribution and performance on the task were analysed with multivariate support vector regression, which enables the assessment of the joint contribution of multiple regions in the determination of a given behaviour of interest. Our main findings were: (i) bilateral dorsomedial prefrontal lesions increased altruistic punishment, whereas lesions of the right perisylvian region and left temporo-insular cortex decreased punishment; (ii) altruistic donations were increased by bilateral lesions of the dorsomedial parietal cortex, whereas lesions of the right posterior superior temporal sulcus and middle temporal gyri decreased donations; (iii) altruistic punishment and donation were only weakly correlated, emphasizing their dissociable neuroanatomical associations; and (iv) altruistic decisions were not related to post-traumatic personality changes. These findings indicate that altruistic punishment and donation are determined by largely non-overlapping cerebral regions, which have previously been implicated in social cognition and moral experience such as evaluations of intentionality and intuitions of justice and morality.10.1093/brain/awy064_video1awy064media15758316955001.