ABSTRACT
In response to the emergence of SARS-CoV-2 variants of concern, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info , a platform that currently tracks over 40 million combinations of Pango lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials and the general public. We describe the interpretable visualizations available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data and the server infrastructure that enables widespread data dissemination via a high-performance API that can be accessed using an R package. We show how outbreak.info can be used for genomic surveillance and as a hypothesis-generation tool to understand the ongoing pandemic at varying geographic and temporal scales.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Genomics , Disease Outbreaks , MutationABSTRACT
The emergence of SARS-CoV-2 variants of concern has prompted the need for near real-time genomic surveillance to inform public health interventions. In response to this need, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that currently tracks over 40 million combinations of PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials, and the general public. We describe the interpretable and opinionated visualizations in the variant and location focussed reports available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data, and the server infrastructure that enables widespread data dissemination via a high performance API that can be accessed using an R package. We present a case study that illustrates how outbreak.info can be used for genomic surveillance and as a hypothesis generation tool to understand the ongoing pandemic at varying geographic and temporal scales. With an emphasis on scalability, interactivity, interpretability, and reusability, outbreak.info provides a template to enable genomic surveillance at a global and localized scale.