Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364788

ABSTRACT

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Subject(s)
Myelin Sheath , Retroelements , Animals , Gene Expression , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Retroelements/genetics , RNA/metabolism , Zebrafish/genetics , Anura
2.
Brain ; 146(6): 2453-2463, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36995973

ABSTRACT

In multiple sclerosis, while remarkable progress has been accomplished to control the inflammatory component of the disease, repair of demyelinated lesions is still an unmet need. Despite encouraging results generated in experimental models, several candidates favouring or promoting remyelination have not reached the expected outcomes in clinical trials. One possible reason for these failures is that, in most cases, during preclinical testing, efficacy was evaluated on histology only, while functional recovery had not been assessed. We have generated a Xenopus laevis transgenic model Tg(mbp:GFP-NTR) of conditional demyelination in which spontaneous remyelination can be accelerated using candidate molecules. Xenopus laevis is a classic model for in vivo studies of myelination because tadpoles are translucent. We reasoned that demyelination should translate into loss of sensorimotor functions followed by behavioural recovery upon remyelination. To this end, we measured the swimming speed and distance travelled before and after demyelination and during the ongoing spontaneous remyelination and have developed a functional assay based on the visual avoidance of a virtual collision. Here we show that alteration of these functional and clinical performances correlated well with the level of demyelination and that histological remyelination, assayed by counting in vivo the number of myelinating oligodendrocytes in the optic nerve, translated in clinical-functional recovery. This method was further validated in tadpoles treated with pro-remyelinating agents (clemastine, siponimod) showing that increased remyelination in the optic nerve was associated with functional improvement. Our data illustrate the potential interest of correlating histopathological parameters and functional-clinical parameters to screen molecules promoting remyelination in a simple in vivo model of conditional demyelination.


Subject(s)
Multiple Sclerosis , Remyelination , Animals , Multiple Sclerosis/pathology , Oligodendroglia/pathology , Remyelination/physiology , Optic Nerve/pathology , Disease Models, Animal , Xenopus laevis , Myelin Sheath/pathology
3.
J Neuroinflammation ; 20(1): 253, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37926818

ABSTRACT

BACKGROUND: Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis. FINDINGS: Here we demonstrate an unexpected role for Mertk-expressing microglia in both oligodendrogenesis and myelination. The selective depletion of Mertk from microglia resulted in reduced oligodendrocyte production in early development and the generation of pathological myelin. During demyelination, mice deficient in microglial Mertk had thinner myelin and showed signs of impaired OPC differentiation. We established that Mertk signalling inhibition impairs oligodendrocyte repopulation in Xenopus tadpoles following demyelination. CONCLUSION: These data highlight the importance of microglia in myelination and are the first to identify Mertk as a regulator of oligodendrogenesis and myelin ultrastructure.


Subject(s)
Demyelinating Diseases , Myelin Sheath , Mice , Animals , Myelin Sheath/pathology , Microglia , c-Mer Tyrosine Kinase/genetics , Oligodendroglia/pathology , Cell Differentiation/physiology , Demyelinating Diseases/pathology
4.
Curr Opin Neurol ; 35(3): 307-312, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35674073

ABSTRACT

PURPOSE OF REVIEW: The introduction some 30 years ago of ß-interferon, followed by a panel of immunomodulators and immunosuppressants has led to a remarkable improvement in the management of multiple sclerosis (MS) patients. Despite these noticeable progresses, which lower the number of relapses and thereby ameliorate patients' quality of life, preventing long-term progression of disability is still an unmet need, highlighting the necessity to develop therapeutic strategies aimed at repairing demyelinated lesions and protecting axons from degeneration. The capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. RECENT FINDINGS: The pioneer electron microscopic evidence by Périer and Grégoire [Périer O, Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain 1965; 88:937-952] suggesting the capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. Here we review some recently identified mechanisms involved in the remyelination process, focusing on the role of electrical activity and the involvement of innate immune cells. We then provide an update on current strategies promoting endogenous myelin repair. SUMMARY: Identification of therapeutic targets for remyelination has opened an active therapeutic field in MS. Although still in early phase trials, with heterogenous efficacy, the door for myelin regeneration in MS is now opened.


Subject(s)
Multiple Sclerosis , Remyelination , Humans , Multiple Sclerosis/drug therapy , Myelin Sheath/pathology , Oligodendroglia/pathology , Quality of Life
5.
Proc Natl Acad Sci U S A ; 115(35): E8246-E8255, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30108144

ABSTRACT

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk-associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53 Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17 However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Oligodendroglia/metabolism , Stem Cells/metabolism , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , CHARGE Syndrome/pathology , Cell Survival , DNA-Binding Proteins/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Mice , Mice, Knockout , Nuclear Proteins , Oligodendroglia/pathology , Stem Cells/pathology , Transcription Factors
6.
Int J Mol Sci ; 21(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492937

ABSTRACT

Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Monitoring/standards , Nervous System/drug effects , Toxicity Tests/standards , Animals , Endocrine System/drug effects , Environmental Exposure/adverse effects , Guidelines as Topic , Humans , Mice , Neurons/metabolism , Rats , Risk Assessment , Transcriptome
7.
Glia ; 67(12): 2248-2263, 2019 12.
Article in English | MEDLINE | ID: mdl-31328333

ABSTRACT

The fast and reliable propagation of action potentials along myelinated fibers relies on the clustering of voltage-gated sodium channels at nodes of Ranvier. Axo-glial communication is required for assembly of nodal proteins in the central nervous system, yet the underlying mechanisms remain poorly understood. Oligodendrocytes are known to support node of Ranvier assembly through paranodal junction formation. In addition, the formation of early nodal protein clusters (or prenodes) along axons prior to myelination has been reported, and can be induced by oligodendrocyte conditioned medium (OCM). Our recent work on cultured hippocampal neurons showed that OCM-induced prenodes are associated with an increased conduction velocity (Freeman et al., 2015). We here unravel the nature of the oligodendroglial secreted factors. Mass spectrometry analysis of OCM identified several candidate proteins (i.e., Contactin-1, ChL1, NrCAM, Noelin2, RPTP/Phosphacan, and Tenascin-R). We show that Contactin-1 combined with RPTP/Phosphacan or Tenascin-R induces clusters of nodal proteins along hippocampal GABAergic axons. Furthermore, Contactin-1-immunodepleted OCM or OCM from Cntn1-null mice display significantly reduced clustering activity, that is restored by addition of soluble Contactin-1. Altogether, our results identify Contactin-1 secreted by oligodendrocytes as a novel factor that may influence early steps of nodal sodium channel cluster formation along specific axon populations.


Subject(s)
Contactin 1/metabolism , Hippocampus/metabolism , Nodal Protein/metabolism , Oligodendroglia/metabolism , Animals , Cells, Cultured , Central Nervous System/cytology , Central Nervous System/metabolism , Contactin 1/genetics , GABAergic Neurons/metabolism , Hippocampus/cytology , Mice , Mice, Knockout , Mice, Transgenic , Nodal Protein/genetics , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Rats, Wistar
8.
Genes Dev ; 25(8): 831-44, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21498572

ABSTRACT

Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.


Subject(s)
Neurogenesis/physiology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Lymphangiogenesis/genetics , Lymphangiogenesis/physiology , Mice , Mice, Mutant Strains , Microscopy, Electron, Transmission , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor Receptor-3/genetics
9.
Mult Scler ; 24(11): 1421-1432, 2018 10.
Article in English | MEDLINE | ID: mdl-28752787

ABSTRACT

BACKGROUND: In multiple sclerosis, development of screening tools for remyelination-promoting molecules is timely. OBJECTIVE: A Xenopus transgenic line allowing conditional ablation of myelinating oligodendrocytes has been adapted for in vivo screening of remyelination-favoring molecules. METHODS: In this transgenic, the green fluorescent protein reporter is fused to E. coli nitroreductase and expressed specifically in myelinating oligodendrocytes. Nitroreductase converts the innocuous pro-drug metronidazole to a cytotoxin. Spontaneous remyelination occurs after metronidazole-induced demyelinating responses. As tadpoles are transparent, these events can be monitored in vivo and quantified. At the end of metronidazole-induced demyelination, tadpoles were screened in water containing the compounds tested. After 72 h, remyelination was assayed by counting numbers of oligodendrocytes per optic nerve. RESULTS: Among a battery of molecules tested, siponimod, a dual agonist of sphingosine-1-phosphate receptor 1 and 5, was among the most efficient favoring remyelination. Crispr/cas9 gene editing showed that the promyelinating effect of siponimod involves the sphingosine-1-phosphate receptor 5. CONCLUSION: This Xenopus transgenic line constitutes a simple in vivo screening platform for myelin repair therapeutics. We validated several known promyelinating compounds and demonstrated that the strong remyelinating efficacy of siponimod implicates the sphingosine-1-phosphate receptor 5.


Subject(s)
Azetidines/pharmacology , Benzyl Compounds/pharmacology , Disease Models, Animal , Receptors, Lysosphingolipid/agonists , Remyelination/drug effects , Animals , Animals, Genetically Modified , Female , Larva , Male , Remyelination/physiology , Xenopus
10.
Ann Neurol ; 79(5): 726-738, 2016 May.
Article in English | MEDLINE | ID: mdl-26891452

ABSTRACT

BACKGROUND: Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin in the central nervous system white matter, Pittsburgh compound B ([11 C]PiB) can be used as a positron emission tomography (PET) tracer to explore myelin dynamics in MS. METHODS: Patients with active relapsing-remitting MS (n = 20) and healthy controls (n = 8) were included in a longitudinal trial combining PET with [11 C]PiB and magnetic resonance imaging. Voxel-wise maps of [11 C]PiB distribution volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the global index of myelin content change; the index of demyelination; and the index of remyelination. RESULTS: At baseline, there was a progressive reduction in [11 C]PiB binding from the normal-appearing white matter to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal decrease in the tracer binding at the voxel level. During follow-up, high between-patient variability was found for all indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p = 0.006 and beta-coefficient = -0.67 with the Expanded Disability Status Scale; p = 0.003 and beta-coefficient = -0.68 with the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index. INTERPRETATION: [11 C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients depending on their individual remyelination potential, which significantly correlates with clinical disability. This technique should be considered to assess novel promyelinating drugs. Ann Neurol 2016;79:726-738.

11.
Curr Opin Neurol ; 29(3): 286-92, 2016 06.
Article in English | MEDLINE | ID: mdl-27035897

ABSTRACT

PURPOSE OF REVIEW: Despite major progress in multiple sclerosis (MS) treatment, to date, accumulation of irreversible clinical disability is not sufficiently prevented with immunotherapies. In this context, repair strategies aimed at reducing axonal damage are becoming a very active field of preclinical and clinical research. RECENT FINDINGS: Improved understanding of the cellular and molecular mechanisms of myelin repair, together with the emergence of new therapeutic candidates are paving the way for novel therapeutic strategies in MS. In parallel, there is a very active development of imaging methods to assess lesions ongoing remyelination that are crucially needed to evaluate therapeutic efficacy. SUMMARY: The current development of a very dynamic and multidisciplinary research on remyelination should accelerate the development of myelin repair strategies in MS, to prevent disability progression.


Subject(s)
Multiple Sclerosis/drug therapy , Myelin Sheath/physiology , Nerve Regeneration/physiology , Remyelination/physiology , Animals , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/therapeutic use , Multiple Sclerosis/diagnostic imaging , Myelin Sheath/drug effects , Nerve Regeneration/drug effects , Positron-Emission Tomography , Remyelination/drug effects
12.
Curr Opin Neurol ; 29(3): 205-12, 2016 06.
Article in English | MEDLINE | ID: mdl-27035898

ABSTRACT

PURPOSE OF REVIEW: Following the establishment of a number of successful immunomodulatory treatments for multiple sclerosis, current research focuses on the repair of existing damage. RECENT FINDINGS: Promotion of regeneration is particularly important for demyelinated areas with degenerated or functionally impaired axons of the central nervous system's white and gray matter. As the protection and generation of new oligodendrocytes is a key to the re-establishment of functional connections, adult oligodendrogenesis and myelin reconstitution processes are of primary interest. Moreover, understanding, supporting and promoting endogenous repair activities such as mediated by resident oligodendroglial precursor or adult neural stem cells are currently thought to be a promising approach toward the development of novel regenerative therapies. SUMMARY: This review summarizes recent developments and findings related to pharmacological myelin repair as well as to the modulation/application of stem cells with the aim to restore defective myelin sheaths.


Subject(s)
Demyelinating Diseases/therapy , Myelin Sheath , Stem Cell Transplantation , Animals , Demyelinating Diseases/pathology , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy
13.
Dev Neurosci ; 37(3): 232-42, 2015.
Article in English | MEDLINE | ID: mdl-25896276

ABSTRACT

We have generated a Xenopus laevis transgenic line, MBP-GFP-NTR, allowing conditional ablation of myelin-forming oligodendrocytes. In this transgenic line the transgene is driven by the proximal portion of the myelin basic protein regulatory sequence, specific to mature oligodendrocytes. The transgene protein is formed by the green fluorescent protein reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. The NTR enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Ablation of oligodendrocytes by MTZ treatment of the tadpole induced demyelination, and here we show that myelin debris are subsequently eliminated by microglial cells. After cessation of MTZ treatment, remyelination proceeded spontaneously. We questioned the origin of remyelinating cells. Our data suggest that Sox10+ oligodendrocyte precursor cells (OPCs), which are already present in the optic nerve prior to the experimentally induced demyelination, are responsible for remyelination, and this required only minimal (if any) cell division of OPCs. © 2015 S. Karger AG, Basel.


Subject(s)
Demyelinating Diseases/metabolism , Microglia/metabolism , Myelin Sheath/metabolism , Nerve Regeneration/physiology , Oligodendroglia/metabolism , Animals , Animals, Genetically Modified , Anti-Infective Agents/pharmacology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Disease Models, Animal , Metronidazole/pharmacology , Neural Stem Cells , Oligodendroglia/drug effects , Oligodendroglia/pathology , Xenopus laevis
14.
J Neurosci ; 33(23): 9752-9768, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23739972

ABSTRACT

Oligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes. We hypothesized that this regulation implicates transcription factors, which are expressed by OPCs and/or their progenitors. Ascl1/Mash1 is a proneural transcription factor previously implicated in embryonic oligodendrogenesis and operating in genetic interaction with Olig2, an essential transcriptional regulator in oligodendrocyte development. Herein, we have investigated the contribution of Ascl1 to oligodendrocyte development and remyelination in the postnatal cortex. During the neonatal period, Ascl1 expression was detected in progenitors of the cortical subventricular zone and in cortical OPCs. Different genetic approaches to delete Ascl1 in cortical progenitors or OPCs reduced neonatal oligodendrogenesis, showing that Ascl1 positively regulated both OPC specification from subventricular zone progenitors as well as the balance between OPC differentiation and proliferation. Examination of remyelination processes, both in the mouse model for focal demyelination of the corpus callosum and in multiple sclerosis lesions in humans, indicated that Ascl1 activity was upregulated along with increased oligodendrogenesis observed in remyelinating lesions. Additional genetic evidence indicated that remyelinating oligodendrocytes derived from Ascl1(+) progenitors/OPCs and that Ascl1 was required for proper remyelination. Together, our results show that Ascl1 function modulates multiple steps of OPC development in the postnatal brain and in response to demyelinating insults.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Brain/physiology , Myelin Sheath/physiology , Oligodendroglia/metabolism , Animals , Brain/cytology , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Nerve Fibers, Myelinated/metabolism , Neural Stem Cells/metabolism , Oligodendroglia/cytology
17.
J Neurosci ; 32(48): 17172-85, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23197710

ABSTRACT

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Subject(s)
Cell Differentiation/genetics , Homeodomain Proteins/genetics , Oligodendroglia/metabolism , Rhombencephalon/metabolism , Transcription Factors/genetics , Animals , Body Patterning/genetics , Cell Proliferation , Gene Expression Regulation, Developmental , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Myelin Sheath/genetics , Myelin Sheath/metabolism , Rhombencephalon/embryology , Transcription Factors/metabolism
18.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22973012

ABSTRACT

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Subject(s)
Demyelinating Diseases/pathology , Demyelinating Diseases/physiopathology , Disease Models, Animal , Microscopy, Fluorescence, Multiphoton/methods , Nerve Regeneration/physiology , Xenopus laevis/anatomy & histology , Xenopus laevis/physiology , Animals , Humans
19.
Ann Neurol ; 69(4): 673-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21337603

ABSTRACT

OBJECTIVE: Imaging of myelin tracts in vivo would greatly improve the monitoring of demyelinating diseases such as multiple sclerosis (MS). To date, no imaging technique specifically targets demyelination and remyelination. Recently, amyloid markers related to Congo red have been shown to bind to central nervous system (CNS) myelin. Here we questioned whether the thioflavine-T derivative 2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PIB), which also binds to amyloid plaques, could serve as a myelin marker. METHODS: PIB fixation to myelin was studied by fluorescence in the normal and dysmyelinating mouse brain, as well as in the postmortem brain of MS patients. Positron emission tomography (PET) experiments were conducted using [¹¹C]PIB in baboons and in a proof of concept clinical study in 2 MS patients. RESULTS: Applied directly on tissue sections or after intraperitoneal injection, PIB stained CNS myelin, and the decrease in the level of fixation paralleled the amount of myelin loss in a dysmyelinating mutant. In normally myelinated areas of postmortem MS brain, demyelinated and remyelinated lesions were clearly distinguishable by the differential intensity of labeling observed with PIB. PET using intravenously injected radiolabeled [¹¹C]PIB imaged CNS myelin in baboons and humans. In MS patients, the dynamic analysis of PET acquisitions allowed quantitative assessment of demyelination. INTERPRETATION: PIB could be used as an imaging marker to quantify myelin loss and repair in demyelinating diseases.


Subject(s)
Benzothiazoles , Brain/diagnostic imaging , Brain/physiopathology , Carbon Radioisotopes , Demyelinating Diseases/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Positron-Emission Tomography , Aniline Compounds , Animals , Cadaver , Humans , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Nerve Regeneration , Papio anubis , Positron-Emission Tomography/methods , Thiazoles
20.
Article in English | MEDLINE | ID: mdl-35354603

ABSTRACT

BACKGROUND AND OBJECTIVES: Siponimod is an oral, selective sphingosine-1-phosphate receptor-1/5 modulator approved for treatment of multiple sclerosis. METHODS: Mouse MRI was used to investigate remyelination in the cuprizone model. We then used a conditional demyelination Xenopus laevis model to assess the dose-response of siponimod on remyelination. In experimental autoimmune encephalomyelitis-optic neuritis (EAEON) in C57Bl/6J mice, we monitored the retinal thickness and the visual acuity using optical coherence tomography and optomotor response. Optic nerve inflammatory infiltrates, demyelination, and microglial and oligodendroglial differentiation were assessed by immunohistochemistry, quantitative real-time PCR, and bulk RNA sequencing. RESULTS: An increased remyelination was observed in the cuprizone model. Siponimod treatment of demyelinated tadpoles improved remyelination in comparison to control in a bell-shaped dose-response curve. Siponimod in the EAEON model attenuated the clinical score, reduced the retinal degeneration, and improved the visual function after prophylactic and therapeutic treatment, also in a bell-shaped manner. Inflammatory infiltrates and demyelination of the optic nerve were reduced, the latter even after therapeutic treatment, which also shifted microglial differentiation to a promyelinating phenotype. DISCUSSION: These results confirm the immunomodulatory effects of siponimod and suggest additional regenerative and promyelinating effects, which follow the dynamics of a bell-shaped curve with high being less efficient than low concentrations.


Subject(s)
Remyelination , Animals , Azetidines , Benzyl Compounds/pharmacology , Cuprizone/pharmacology , Mice , Microglia , Remyelination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL