Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Malar J ; 23(1): 18, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218860

ABSTRACT

BACKGROUND: Malaria outbreaks are detected by applying the World Health Organization (WHO)-recommended thresholds (the less sensitive 75th percentile or mean + 2 standard deviations [2SD] for medium-to high-transmission areas, and the more sensitive cumulative sum [C-SUM] method for low and very low-transmission areas). During 2022, > 50% of districts in Uganda were in an epidemic mode according to the 75th percentile method used, resulting in a need to restrict national response to districts with the highest rates of complicated malaria. The three threshold approaches were evaluated to compare their outbreak-signaling outputs and help identify prioritization approaches and method appropriateness across Uganda. METHODS: The three methods were applied as well as adjusted approaches (85th percentile and C-SUM + 2SD) for all weeks in 2022 for 16 districts with good reporting rates ( ≥ 80%). Districts were selected from regions originally categorized as very low, low, medium, and high transmission; district thresholds were calculated based on 2017-2021 data and re-categorized them for this analysis. RESULTS: Using district-level data to categorize transmission levels resulted in re-categorization of 8/16 districts from their original transmission level categories. In all districts, more outbreak weeks were detected by the 75th percentile than the mean + 2SD method (p < 0.001). For all 9 very low or low-transmission districts, the number of outbreak weeks detected by C-SUM were similar to those detected by the 75th percentile. On adjustment of the 75th percentile method to the 85th percentile, there was no significant difference in the number of outbreak weeks detected for medium and low transmission districts. The number of outbreak weeks detected by C-SUM + 2SD was similar to those detected by the mean + 2SD method for all districts across all transmission intensities. CONCLUSION: District data may be more appropriate than regional data to categorize malaria transmission and choose epidemic threshold approaches. The 75th percentile method, meant for medium- to high-transmission areas, was as sensitive as C-SUM for low- and very low-transmission areas. For medium and high-transmission areas, more outbreak weeks were detected with the 75th percentile than the mean + 2SD method. Using the 75th percentile method for outbreak detection in all areas and the mean + 2SD for prioritization of medium- and high-transmission areas in response may be helpful.


Subject(s)
Epidemics , Malaria , Humans , Uganda/epidemiology , Disease Outbreaks , Malaria/epidemiology
2.
Int J Infect Dis ; 145: 107073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670481

ABSTRACT

OBJECTIVES: Early isolation and care for Ebola disease patients at Ebola Treatment Units (ETU) curb outbreak spread. We evaluated time to ETU entry and associated factors during the 2022 Sudan virus disease (SVD) outbreak in Uganda. METHODS: We included persons with RT-PCR-confirmed SVD with onset September 20-November 30, 2022. We categorized days from symptom onset to ETU entry ("delays") as short (≤2), moderate (3-5), and long (≥6); the latter two were "delayed isolation." We categorized symptom onset timing as "earlier" or "later," using October 15 as a cut-off. We assessed demographics, symptom onset timing, and awareness of contact status as predictors for delayed isolation. We explored reasons for early vs late isolation using key informant interviews. RESULTS: Among 118 case-patients, 25 (21%) had short, 43 (36%) moderate, and 50 (43%) long delays. Seventy-five (64%) had symptom onset later in the outbreak. Earlier symptom onset increased risk of delayed isolation (crude risk ratio = 1.8, 95% confidence interval (1.2-2.8]). Awareness of contact status and SVD symptoms, and belief that early treatment-seeking was lifesaving facilitated early care-seeking. Patients with long delays reported fear of ETUs and lack of transport as contributors. CONCLUSION: Delayed isolation was common early in the outbreak. Strong contact tracing and community engagement could expedite presentation to ETUs.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Uganda/epidemiology , Male , Female , Adult , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/therapy , Middle Aged , Young Adult , Time-to-Treatment , Adolescent , Sudan/epidemiology , Time Factors , Patient Isolation
SELECTION OF CITATIONS
SEARCH DETAIL