Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comput Biol Med ; 164: 107324, 2023 09.
Article in English | MEDLINE | ID: mdl-37591161

ABSTRACT

Despite the advancement in deep learning-based semantic segmentation methods, which have achieved accuracy levels of field experts in many computer vision applications, the same general approaches may frequently fail in 3D medical image segmentation due to complex tissue structures, noisy acquisition, disease-related pathologies, as well as the lack of sufficiently large datasets with associated annotations. For expeditious diagnosis and quantitative image analysis in large-scale clinical trials, there is a compelling need to predict segmentation quality without ground truth. In this paper, we propose a deep learning framework to locate erroneous regions on the boundary surfaces of segmented objects for quality control and assessment of segmentation. A Convolutional Neural Network (CNN) is explored to learn the boundary related image features of multi-objects that can be used to identify location-specific inaccurate segmentation. The predicted error locations can facilitate efficient user interaction for interactive image segmentation (IIS). We evaluated the proposed method on two data sets: Osteoarthritis Initiative (OAI) 3D knee MRI and 3D calf muscle MRI. The average sensitivity scores of 0.95 and 0.92, and the average positive predictive values of 0.78 and 0.91 were achieved, respectively, for erroneous surface region detection of knee cartilage segmentation and calf muscle segmentation. Our experiment demonstrated promising performance of the proposed method for segmentation quality assessment by automated detection of erroneous surface regions in medical images.


Subject(s)
Knee Joint , Osteoarthritis , Humans , Neural Networks, Computer , Quality Control , Semantics
2.
J Med Imaging (Bellingham) ; 10(5): 054002, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37692093

ABSTRACT

Purpose: General deep-learning (DL)-based semantic segmentation methods with expert level accuracy may fail in 3D medical image segmentation due to complex tissue structures, lack of large datasets with ground truth, etc. For expeditious diagnosis, there is a compelling need to predict segmentation quality without ground truth. In some medical imaging applications, maintaining the quality of segmentation is crucial to the localized regions where disease is prevalent rather than just globally maintaining high-average segmentation quality. We propose a DL framework to identify regions of segmentation inaccuracies by combining a 3D generative adversarial network (GAN) and a convolutional regression network. Approach: Our approach is methodologically based on the learned ability to reconstruct the original images identifying the regions of location-specific segmentation failures, in which the reconstruction does not match the underlying original image. We use conditional GAN to reconstruct input images masked by the segmentation results. The regression network is trained to predict the patch-wise Dice similarity coefficient (DSC), conditioned on the segmentation results. The method relies directly on the extracted segmentation related features and does not need to use ground truth during the inference phase to identify erroneous regions in the computed segmentation. Results: We evaluated the proposed method on two public datasets: osteoarthritis initiative 4D (3D + time) knee MRI (knee-MR) and 3D non-small cell lung cancer CT (lung-CT). For the patch-wise DSC prediction, we observed the mean absolute errors of 0.01 and 0.04 with the independent standard for the knee-MR and lung-CT data, respectively. Conclusions: This method shows promising results in localizing the erroneous segmentation regions that may aid the downstream analysis of disease diagnosis and prognosis prediction.

SELECTION OF CITATIONS
SEARCH DETAIL