Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biochemistry ; 49(39): 8658-67, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20804154

ABSTRACT

α-Lactalbumin (LA) forms with oleic acid (OA) a complex which has been reported to induce the selective death of tumor cells. However, the mechanism by which this complex kills a wide range of tumor cell lines is as yet largely unknown. The difficulty in rationalizing the cytotoxic effects of the LA/OA complex can be due to the fact that the molecular aspects of the interaction between the protein and the fatty acid are still poorly understood, in particular regarding the oligomeric state of the protein and the actual molar ratio of OA over protein in the complex. Here, the effect of LA addition to an OA aqueous solution has been examined by dynamic light scattering measurements and transmission electron microscopy. Upon protein addition, the aggregation state of the rather insoluble OA is dramatically changed, and more water-soluble and smaller aggregates of the fatty acid are formed. A mixture of LA and an excess of OA forms a high molecular weight complex that can be isolated by size-exclusion chromatography and that displays cellular toxicity toward Jurkat cells. On the basis of gel filtration data, cross-linking experiments with glutaraldehyde, and OA titration, we evaluated that the isolated LA/OA complex is given by 4-5 protein molecules that bind 68-85 OA molecules. The protein in the complex adopts a molten globule-like conformation, and it interacts with the fatty acid mostly through its α-helical domain, as indicated by circular dichroism measurements and limited proteolysis experiments. Overall, we interpret our and previous data as indicating that the cellular toxicity of a LA/OA complex is due to the effect of a protein moiety in significantly enhancing the water solubility of the cytotoxic OA and, therefore, that the protein/OA complex can serve mainly as a carrier of the toxic fatty acid in a physiological milieu.


Subject(s)
Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Lactalbumin/pharmacology , Oleic Acid/metabolism , Oleic Acid/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cattle , Cross-Linking Reagents , Humans , Jurkat Cells , Lactalbumin/chemistry , Lactalbumin/metabolism , Leukemia, T-Cell/drug therapy , Molecular Conformation , Oleic Acid/chemistry , Protein Conformation
2.
J Mol Biol ; 367(5): 1237-45, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17320902

ABSTRACT

The N-terminal fragment 1-29 of horse heart apomyoglobin (apoMb(1-29)) is highly prone to form amyloid-like fibrils at low pH. Fibrillogenesis at pH 2.0 occurs following a nucleation-dependent growth mechanism, as evidenced by the thioflavin T (ThT) assay. Transmission electron microscopy (TEM) confirms the presence of regular amyloid-like fibrils and far-UV circular dichroism (CD) spectra indicate the acquisition of a high content of beta-sheet structure. ThT assay, TEM and CD highlight fast and complete disaggregation of the fibrils, if the pH of a suspension of mature fibrils is increased to 8.3. It is of interest that amyloid-like fibrils form again if the pH of the solution is brought back to 2.0. While apoMb(1-29) fibrils obtained at pH 2.0 are resistant to proteolysis by pepsin, the disaggregated fibrils are easily cleaved at pH 8.3 by trypsin and V8 protease, and some of the resulting fragments aggregate very quickly in the proteolysis mixture, forming amyloid-like fibrils. We show that the increase of amyloidogenicity of apoMb(1-29) following acidification or proteolysis at pH 8.3 can be attributed to the decrease of the peptide net charge following these alterations. The results observed here for apoMb(1-29) provide an experimental basis for explaining the effect of charge and pH on amyloid fibril formation by both unfolded and folded protein systems.


Subject(s)
Amyloid/biosynthesis , Amyloid/chemistry , Apoproteins/chemistry , Apoproteins/metabolism , Hydrogen-Ion Concentration , Myoglobin/chemistry , Myoglobin/metabolism , Humans , Peptide Fragments/chemistry , Protein Denaturation , Protein Processing, Post-Translational , Spectrum Analysis , Static Electricity
3.
Protein Sci ; 13(6): 1572-85, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15152090

ABSTRACT

The conformational features of native and mutant forms of sperm-whale apomyoglobin (apoMb) at neutral pH were probed by limited proteolysis experiments utilizing up to eight proteases of different substrate specificities. It was shown that all proteases selectively cleave apoMb at the level of chain segment 82-94 (HEAELKPLAQSHA), encompassing helix F in the X-ray structure of the holo form of the native protein; for example, thermolysin cleaves the Pro 88-Leu 89 peptide bond. These results indicate that helix F is highly flexible or largely disrupted in apoMb. Because helix F contains the helix-breaking Pro 88 residue, we propose that helix F is kept in place in the native holo protein by a variety of helix-heme stabilizing interactions. To modulate the stability of helix F, the Pro88Ala and Pro88Gly mutants were prepared by site-directed mutagenesis, and their conformational properties investigated by both far-UV circular dichroism spectroscopy and limited proteolysis. The helix content of the Pro88Ala mutant was somewhat enhanced with respect to that of both native and Pro88Gly mutant, as expected from the fact that Ala is the strongest helix inducer among the 20 amino acid residues. The rate of limited proteolysis of the three apoMb variants by thermolysin and proteinase K was in the order native > Pro88Gly >> Pro88Ala, in agreement with the scale of helix propensity of Ala, Gly, and Pro. The possible role of the flexible/unfolded chain segment 82-94 for the function and fate of apoMb at the cellular level is discussed.


Subject(s)
Amino Acid Substitution/genetics , Apoproteins/chemistry , Apoproteins/genetics , Myoglobin/chemistry , Myoglobin/genetics , Amino Acid Sequence , Animals , Apoproteins/metabolism , Circular Dichroism , Models, Molecular , Molecular Sequence Data , Mutation , Myoglobin/metabolism , Peptide Hydrolases/metabolism , Protein Folding , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization , Whales , X-Ray Diffraction
4.
Acta Biochim Pol ; 51(2): 299-321, 2004.
Article in English | MEDLINE | ID: mdl-15218531

ABSTRACT

Limited proteolysis experiments can be successfully used to probe conformational features of proteins. In a number of studies it has been demonstrated that the sites of limited proteolysis along the polypeptide chain of a protein are characterized by enhanced backbone flexibility, implying that proteolytic probes can pinpoint the sites of local unfolding in a protein chain. Limited proteolysis was used to analyze the partly folded (molten globule) states of several proteins, such as apomyoglobin, alpha-lactalbumin, calcium-binding lysozymes, cytochrome c and human growth hormone. These proteins were induced to acquire the molten globule state under specific solvent conditions, such as low pH. In general, the protein conformational features deduced from limited proteolysis experiments nicely correlate with those deriving from other biophysical and spectroscopic techniques. Limited proteolysis is also most useful for isolating protein fragments that can fold autonomously and thus behave as protein domains. Moreover, the technique can be used to identify and prepare protein fragments that are able to associate into a native-like and often functional protein complex. Overall, our results underscore the utility of the limited proteolysis approach for unravelling molecular features of proteins and appear to prompt its systematic use as a simple first step in the elucidation of structure-dynamics-function relationships of a novel and rare protein, especially if available in minute amounts.


Subject(s)
Biochemistry/methods , Proteins/chemistry , Proteomics/methods , Animals , Apoproteins/chemistry , Calcium/chemistry , Cytochromes c/chemistry , Human Growth Hormone/chemistry , Humans , Lactalbumin/chemistry , Models, Molecular , Muramidase/chemistry , Myoglobin/chemistry , Protein Conformation , Protein Folding , Proteins/metabolism
5.
Biochemistry ; 43(20): 6230-40, 2004 May 25.
Article in English | MEDLINE | ID: mdl-15147207

ABSTRACT

Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.


Subject(s)
Apoproteins/chemistry , Myoglobin/chemistry , Peptide Fragments/chemistry , Protein Conformation , Protein Folding , Animals , Apoproteins/metabolism , Circular Dichroism , Horses , Models, Molecular , Myocardium/enzymology , Myoglobin/metabolism , Oxidation-Reduction , Peptide Fragments/metabolism , Thermolysin/metabolism
6.
Biochemistry ; 43(21): 6576-86, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15157090

ABSTRACT

The limited proteolysis approach was used to analyze the conformational features of human growth hormone (hGH) under acidic solvent conditions (A-state). Pepsin was used as the proteolytic probe because of its poor substrate specificity and its activity at low pH. Limited proteolysis of hGH in its A-state results in a selective cleavage of the Phe44-Leu45 peptide bond, leading to the production of fragments 1-44 and 45-191. The two fragments were isolated in homogeneous form for studying their conformational properties by means of spectroscopic methods. Fragment 1-44 was shown to retain little secondary and tertiary structure at neutral pH, while fragment 45-191 independently folds into a highly helical secondary structure. In particular, we have shown that the two peptic fragments are able to associate into a stable and native-like hGH complex 1-44/45-191. Our proteolysis data indicate that in acid solution hGH adopts a partly folded state characterized by a local unfolding of the first minihelix (residues 38-47) encompassing the Phe44-Leu45 peptide bond. Of interest, hGH has both insulin-like and diabetogenic effects. Two fragments of hGH occur in vivo and exert these two opposite activities, namely, fragment 1-43 showing an insulin-potentiating effect and fragment 44-191 showing a diabetogenic activity. The results of this study suggest that the conformational changes of hGH induced by an acidic pH promote the generation of the two physiologically relevant fragments by proteolytic processing of the hormone. Although pepsin cannot be the enzyme responsible for the in vivo processing of the hormone, we propose that limited proteolysis of hGH at low pH is physiologically relevant, since the hormone is exposed to an acidic environment in the cell. This study reports for the first time the analysis of the conformational features of the two individual functional domains of hGH and of their complex.


Subject(s)
Human Growth Hormone/chemistry , Human Growth Hormone/metabolism , Amino Acid Sequence , Circular Dichroism , Growth Hormone/metabolism , Growth Hormone/physiology , Human Growth Hormone/isolation & purification , Humans , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Pepsin A/metabolism , Peptide Fragments/metabolism , Peptide Fragments/physiology , Protein Conformation , Protein Folding , Spectrometry, Fluorescence , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL