Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Wound Repair Regen ; 30(1): 64-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34618990

ABSTRACT

Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.


Subject(s)
Negative-Pressure Wound Therapy , Wound Healing , Animals , Bandages , Pilot Projects , Swine
2.
Front Mol Med ; 3: 1195822, 2023.
Article in English | MEDLINE | ID: mdl-39086685

ABSTRACT

Introduction: Wound therapies are capable of modulating the complex molecular signaling profile of tissue regeneration. However traditional, bulk tissue analysis results in nonspecific expressional profiles and diluted signaling that lacks temporal-spatial information. Methods: An acute incisional porcine wound model was developed in the context of negative pressure wound therapy (NPWT). Dressing materials were inserted into wounds with or without NPWT exposure and evaluated over 8-hours. Upon wound explantation, tissue was stratified and dissected into the epidermis, dermis, or subcutaneous layer, or left undissected as a bulk sample and all groups processed for RNAseq. RNAseq of stratified layers provided spatial localization of expressional changes within defined tissue regions, including angiogenesis, inflammation, and matrix remodeling. Results: Different expressional profiles were observed between individual tissue layers relative to each other within a single wound group and between each individual layer relative to bulk analysis. Tissue stratification identified unique differentially expressed genes within specific layers of tissue that were hidden during bulk analysis, as well as amplification of weak signals and/or inversion of signaling between two layers of the same wound, suggesting that two layers of skin can cancel out signaling within bulk analytical approaches. Discussion: The unique wound stratification and spatial RNAseq approach in this study provides a new methodology to observe expressional patterns more precisely within tissue that may have otherwise not been detectable. Together these experimental data offer novel insight into early expressional patterns and genomic profiles, within and between tissue layers, in wound healing pathways that could potentially help guide clinical decisions and improve wound outcomes.

3.
Biomater Res ; 26(1): 50, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183134

ABSTRACT

Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.

4.
J Biomed Mater Res B Appl Biomater ; 109(12): 1967-1985, 2021 12.
Article in English | MEDLINE | ID: mdl-34002476

ABSTRACT

The process of wound healing includes four phases: Hemostasis, inflammation, proliferation, and remodeling. Many wound dressings and technologies have been developed to enhance the body's ability to close wounds and restore the function of damaged tissues. Several advancements in wound healing technology have resulted from innovative experiments by individual scientists or physicians working independently. The interplay between the medical and scientific research fields is vital to translating new discoveries in the lab to treatments at the bedside. Tracing the history of wound dressing development reveals that there is an opportunity for deeper collaboration between multiple disciplines to accelerate the advancement of novel wound healing technologies. In this review, we explore the different types of wound dressings and biomaterials used to treat wounds, and we investigate the role of multidisciplinary collaboration in the development of various wound management technologies to illustrate the benefit of direct collaboration between physicians and scientists.


Subject(s)
Bandages , Wound Healing , Biocompatible Materials
5.
Dent J (Basel) ; 4(3)2016 Sep 06.
Article in English | MEDLINE | ID: mdl-29563472

ABSTRACT

Negative pressure wound therapy has greatly advanced the field of wound healing for nearly two decades, by providing a robust surgical adjunct technique for accelerating wound closure in acute and chronic wounds. However, the application of negative pressure wound therapy in maxillofacial applications has been relatively under utilized as a result of the physical articulations and contours of the head and neck that make it challenging to obtain an airtight seal for different negative pressure wound therapy systems. Adapting negative pressure wound therapies for maxillofacial applications could yield significant enhancement of wound closure in maxillofacial applications. The current review summarizes the basic science underlying negative pressure wound therapy, as well as specific maxillofacial procedures that could benefit from negative pressure wound therapy.

SELECTION OF CITATIONS
SEARCH DETAIL