Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sensors (Basel) ; 24(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39275503

ABSTRACT

This work aims at proposing an affordable, non-wearable system to detect falls of people in need of care. The proposal uses artificial vision based on deep learning techniques implemented on a Raspberry Pi4 4GB RAM with a High-Definition IR-CUT camera. The CNN architecture classifies detected people into five classes: fallen, crouching, sitting, standing, and lying down. When a fall is detected, the system sends an alert notification to mobile devices through the Telegram instant messaging platform. The system was evaluated considering real daily indoor activities under different conditions: outfit, lightning, and distance from camera. Results show a good trade-off between performance and cost of the system. Obtained performance metrics are: precision of 96.4%, specificity of 96.6%, accuracy of 94.8%, and sensitivity of 93.1%. Regarding privacy concerns, even though this system uses a camera, the video is not recorded or monitored by anyone, and pictures are only sent in case of fall detection. This work can contribute to reducing the fatal consequences of falls in people in need of care by providing them with prompt attention. Such a low-cost solution would be desirable, particularly in developing countries with limited or no medical alert systems and few resources.


Subject(s)
Accidental Falls , Humans , Accidental Falls/prevention & control , Deep Learning , Computers , Algorithms
2.
Sensors (Basel) ; 23(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112394

ABSTRACT

Assistive technology can help people with disabilities to use computers more effectively and can enable them to access the same information and resources as people without disabilities. To obtain more insight into the factors that can bring about the design of an Emulator of Mouse and Keyboard (EMKEY) to higher levels of user satisfaction, an experimental study was conducted in order to analyse its effectiveness and efficiency. The experimental study involved 27 participants (Mage = 20.81, SD = 1.14) who performed three experimental games under different conditions (using the mouse and using EMKEY with head movements and voice commands). According to the results, the use of EMKEY allowed for the successful performance of tasks such as matching stimuli (F(2,78) = 2.39, p = 0.10, η2 = 0.06). However, the execution times of a task were found to be higher when using the emulator to drag an object on the screen (t(52,1) = -18.45, p ≤ 0.001, d = 9.60). These results indicate the effectiveness of technological development for people with upper limb disabilities; however, there is room for improvement in terms of efficiency. The findings are discussed in relation to previous research and are based on future studies aimed at improving the operation of the EMKEY emulator.


Subject(s)
Disabled Persons , Self-Help Devices , Humans , User-Computer Interface , Computers , Upper Extremity
3.
Sensors (Basel) ; 22(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501980

ABSTRACT

Nowadays, daily life involves the extensive use of computers, since human beings are immersed in a technological society. Therefore, it is mandatory to interact with computers, which represents a true disadvantage for people with upper limb disabilities. In this context, this work aims to develop an interface for emulating mouse and keyboard functions (EMKEY) by applying concepts of artificial vision and voice recognition to replace the use of hands. Pointer control is achieved by head movement, whereas voice recognition is used to perform interface functionalities, including speech-to-text transcription. To evaluate the interface's usability and usefulness, two studies were carried out. The first study was performed with 30 participants without physical disabilities. Throughout this study, there were significant correlations found between the emulator's usability and aspects such as adaptability, execution time, and the participant's age. In the second study, the use of the emulator was analyzed by four participants with motor disabilities. It was found that the interface was best used by the participant with cerebral palsy, followed by the participants with upper limb paralysis, spina bifida, and muscular dystrophy. In general, the results show that the proposed interface is easy to use, practical, fairly accurate, and works on a wide range of computers.


Subject(s)
Disabled Persons , Voice , Humans , User-Computer Interface , Computers , Speech
4.
Sensors (Basel) ; 21(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640895

ABSTRACT

Tactile rendering has been implemented in digital musical instruments (DMIs) to offer the musician haptic feedback that enhances his/her music playing experience. Recently, this implementation has expanded to the development of sensory substitution systems known as haptic music players (HMPs) to give the opportunity of experiencing music through touch to the hearing impaired. These devices may also be conceived as vibrotactile music players to enrich music listening activities. In this review, technology and methods to render musical information by means of vibrotactile stimuli are systematically studied. The methodology used to find out relevant literature is first outlined, and a preliminary classification of musical haptics is proposed. A comparison between different technologies and methods for vibrotactile rendering is performed to later organize the information according to the type of HMP. Limitations and advantages are highlighted to find out opportunities for future research. Likewise, methods for music audio-tactile rendering (ATR) are analyzed and, finally, strategies to compose for the sense of touch are summarized. This review is intended for researchers in the fields of haptics, assistive technologies, music, psychology, and human-computer interaction as well as artists that may make use of it as a reference to develop upcoming research on HMPs and ATR.


Subject(s)
Music , Self-Help Devices , Touch Perception , Female , Humans , Male , Technology , Touch
5.
Front Neurosci ; 18: 1425861, 2024.
Article in English | MEDLINE | ID: mdl-39165339

ABSTRACT

Recent advancements in neuromorphic computing have led to the development of hardware architectures inspired by Spiking Neural Networks (SNNs) to emulate the efficiency and parallel processing capabilities of the human brain. This work focuses on testing the HEENS architecture, specifically designed for high parallel processing and biological realism in SNN emulation, implemented on a ZYNQ family FPGA. The study applies this architecture to the classification of digits using the well-known MNIST database. The image resolutions were adjusted to match HEENS' processing capacity. Results were compared with existing work, demonstrating HEENS' performance comparable to other solutions. This study highlights the importance of balancing accuracy and efficiency in the execution of applications. HEENS offers a flexible solution for SNN emulation, allowing for the implementation of programmable neural and synaptic models. It encourages the exploration of novel algorithms and network architectures, providing an alternative for real-time processing with efficient energy consumption.

6.
Neural Netw ; 179: 106593, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39142177

ABSTRACT

Biological neural networks are well known for their capacity to process information with extremely low power consumption. Fields such as Artificial Intelligence, with high computational costs, are seeking for alternatives inspired in biological systems. An inspiring alternative is to implement hardware architectures that replicate the behavior of biological neurons but with the flexibility in programming capabilities of an electronic device, all combined with a relatively low operational cost. To advance in this quest, here we analyze the capacity of the HEENS hardware architecture to operate in a similar manner as an in vitro neuronal network grown in the laboratory. For that, we considered data of spontaneous activity in living neuronal cultures of about 400 neurons and compared their collective dynamics and functional behavior with those obtained from direct numerical simulations (in silico) and hardware implementations (in duris silico). The results show that HEENS is capable to mimic both the in vitro and in silico systems with high efficient-cost ratio, and on different network topological designs. Our work shows that compact low-cost hardware implementations are feasible, opening new avenues for future, highly efficient neuromorphic devices and advanced human-machine interfacing.


Subject(s)
Computer Simulation , Neural Networks, Computer , Neurons , Neurons/physiology , Models, Neurological , Animals , Cells, Cultured , Humans , Action Potentials/physiology
7.
Neural Netw ; 97: 28-45, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29054036

ABSTRACT

Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities.


Subject(s)
Neural Networks, Computer , Algorithms , Cluster Analysis , Computational Biology , Machine Learning , Neurons/physiology , Nonlinear Dynamics , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL