Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Dev Med Child Neurol ; 63(12): 1441-1447, 2021 12.
Article in English | MEDLINE | ID: mdl-34247411

ABSTRACT

AIM: To determine whether genes that cause developmental and epileptic encephalopathies (DEEs) are more commonly implicated in intellectual disability with epilepsy as a comorbid feature than in intellectual disability only. METHOD: We performed targeted resequencing of 18 genes commonly implicated in DEEs in a cohort of 830 patients with intellectual disability (59% male) and 393 patients with DEEs (52% male). RESULTS: We observed a significant enrichment of pathogenic/likely pathogenic variants in patients with epilepsy and intellectual disability (16 out of 159 in seven genes) compared with intellectual disability only (2 out of 671) (p<1.86×10-10 , odds ratio 37.22, 95% confidence interval 8.60-337.0). INTERPRETATION: We identified seven genes that are more likely to cause epilepsy and intellectual disability than intellectual disability only. Conversely, two genes, GRIN2B and SCN2A, can be implicated in intellectual disability without epilepsy; in these instances intellectual disability is not a secondary consequence of ongoing seizures but rather a primary cause. What this paper adds A subset of genes are more commonly implicated in epilepsy than other neurodevelopmental disorders. GRIN2B and SCN2A are implicated in intellectual disability and epilepsy independently.


Subject(s)
Intellectual Disability/genetics , Mutation , NAV1.2 Voltage-Gated Sodium Channel/genetics , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics , Spasms, Infantile/genetics , Adolescent , Child , Exome , Female , Humans , Infant , Male
2.
Am J Hum Genet ; 96(5): 808-15, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25865495

ABSTRACT

GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ~4% of unsolved MAE cases.


Subject(s)
Epilepsies, Myoclonic/genetics , Epilepsy, Generalized/genetics , GABA Plasma Membrane Transport Proteins/genetics , Animals , Epilepsies, Myoclonic/pathology , Epilepsy, Generalized/pathology , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mutation
3.
Epilepsia ; 59(1): e5-e13, 2018 01.
Article in English | MEDLINE | ID: mdl-29171013

ABSTRACT

Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation sequencing of WDR45 in 655 patients with developmental and epileptic encephalopathies. We identified 3/655 patients with DEE plus 4 additional patients with de novo WDR45 pathogenic variants (6 truncations, 1 missense); all were female. Six presented with DEE and 1 with early onset focal seizures and profound regression. Median seizure onset was 12 months, 6 had multiple seizure types, and 5/7 had focal seizures. Three patients had magnetic resonance susceptibility-weighted imaging; blooming was noted in the globus pallidi and substantia nigra in the 2 older children aged 4 and 9 years, consistent with iron accumulation. We show that de novo pathogenic variants are associated with a range of developmental and epileptic encephalopathies with profound developmental consequences.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Mutation/genetics , Spasms, Infantile/complications , Spasms, Infantile/genetics , Brain/diagnostic imaging , Child , Child, Preschool , Developmental Disabilities/diagnostic imaging , Female , Humans , Infant , Magnetic Resonance Imaging , Male , Spasms, Infantile/diagnostic imaging
4.
Neurology ; 100(6): e603-e615, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36307226

ABSTRACT

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Subject(s)
Epilepsy, Generalized , Epilepsy , Ether-A-Go-Go Potassium Channels , Child , Humans , Infant, Newborn , Epilepsy/genetics , Epilepsy, Generalized/genetics , Mutation , Phenotype , Seizures/genetics , Ether-A-Go-Go Potassium Channels/genetics
5.
Neurology ; 85(9): 756-62, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26224730

ABSTRACT

OBJECTIVE: To investigate the role of intragenic deletions of ALDH7A1 in patients with clinical and biochemical evidence of pyridoxine-dependent epilepsy but only a single identifiable mutation in ALDH7A1. METHODS: We designed a custom oligonucleotide array with high-density probe coverage across the ALDH7A1 gene. We performed array comparative genomic hybridization in 6 patients with clinical and biochemical evidence of pyridoxine-dependent epilepsy but only a single detectable mutation in ALDH7A1 by sequence analysis. RESULTS: We found partial deletions of ALDH7A1 in 5 of 6 patients. Breakpoint analysis reveals that the deletions are likely a result of Alu-Alu recombination in all cases. The density of Alu elements within introns of ALDH7A1 suggests susceptibility to recurrent rearrangement. CONCLUSION: Patients with clinical pyridoxine-dependent epilepsy and a single identifiable mutation in ALDH7A1 warrant further investigation for copy number changes involving the ALHD7A1 gene.


Subject(s)
Aldehyde Dehydrogenase/genetics , Epilepsy/genetics , Sequence Deletion , Comparative Genomic Hybridization , Humans , Oligonucleotide Array Sequence Analysis/methods
6.
Neurol Genet ; 1(2): e17, 2015 Aug.
Article in English | MEDLINE | ID: mdl-27066554

ABSTRACT

OBJECTIVE: To assess the presence of DEPDC5 mutations in a cohort of patients with epileptic spasms. METHODS: We performed DEPDC5 resequencing in 130 patients with spasms, segregation analysis of variants of interest, and detailed clinical assessment of patients with possibly and likely pathogenic variants. RESULTS: We identified 3 patients with variants in DEPDC5 in the cohort of 130 patients with spasms. We also describe 3 additional patients with DEPDC5 alterations and epileptic spasms: 2 from a previously described family and a third ascertained by clinical testing. Overall, we describe 6 patients from 5 families with spasms and DEPDC5 variants; 2 arose de novo and 3 were familial. Two individuals had focal cortical dysplasia. Clinical outcome was highly variable. CONCLUSIONS: While recent molecular findings in epileptic spasms emphasize the contribution of de novo mutations, we highlight the relevance of inherited mutations in the setting of a family history of focal epilepsies. We also illustrate the utility of clinical diagnostic testing and detailed phenotypic evaluation in characterizing the constellation of phenotypes associated with DEPDC5 alterations. We expand this phenotypic spectrum to include epileptic spasms, aligning DEPDC5 epilepsies more with the recognized features of other mTORopathies.

7.
EMBO Mol Med ; 7(12): 1580-94, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26613940

ABSTRACT

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Epilepsy , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation, Missense , Coenzymes/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/physiopathology , Humans , Metalloproteins/metabolism , Molybdenum Cofactors , Pteridines/metabolism , Receptors, GABA-A/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL