Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 593
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 596(7872): 362-366, 2021 08.
Article in English | MEDLINE | ID: mdl-34408329

ABSTRACT

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

2.
Cancer Sci ; 115(1): 155-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972389

ABSTRACT

Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , MicroRNAs , Ovarian Neoplasms , Humans , Female , Proto-Oncogene Proteins c-akt , Ovarian Neoplasms/genetics , Extracellular Vesicles/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Tumor Microenvironment/genetics , Suppressor of Cytokine Signaling Proteins , PTEN Phosphohydrolase/genetics , STAT3 Transcription Factor/genetics
3.
Small ; 20(12): e2307454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948430

ABSTRACT

Lead halide hybrid perovskites have made great progress in direct X-ray detection and broadband photodetection, but the existence of toxic Pb and the demand for external operating voltage have severely limited their further applications and operational stability improvements. Therefore, exploring "green" lead-free hybrid perovskite that can both achieve X-ray detection and broadband photodetection without external voltage is of great importance, but remains severely challenging. Herein, using centrosymmetric (BZA)3BiI6 (1, BZA = benzylamine) as a template, a pair of chiral-polar lead-free perovskites, (BZA)2(R/S-PPA)BiI6 (2-R/S, R/S-PPA = (R/S)-1-Phenylpropylamine) are successfully obtained by introducing chiral aryl cations of (R/S)-1-Phenylpropylamine. Compared to 1, chiral-polar 2-R presents a significant irradiation-responsive bulk photovoltaic effect (BPVE) with an open circuit photovoltage of 0.4 V, which enables it with self-powered X-ray, UV-vis-NIR broadband photodetection. Specifically, 2-R device exhibits an ultralow detection limit of 18.5 nGy s-1 and excellent operational stability. Furthermore, 2-R as the first lead-free perovskite achieves significant broad-spectrum (377-940 nm) photodetection via light-induced pyroelectric effect. This work sheds light on the rational crystal reconstruction engineering and design of "green" hybrid perovskite toward high-demanded self-powered radiation detection and broadband photodetection.

4.
Small ; 20(30): e2312281, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456782

ABSTRACT

The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1 cm-2, superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8 nA cm-1 s-1 V-1, 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.

5.
Chemphyschem ; : e202400522, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143702

ABSTRACT

The long-emission-lifetime nature of room-temperature phosphorescence (RTP) materials lays the foundation of their applications in diverse areas. Despite the advantage of mechanical property, processability and solvent dispersity, the emission lifetimes of polymer-based room-temperature phosphorescence materials remain not particularly long because of the labile nature of organic triplet excited states under ambient conditions. Specifically, ambient phosphorescence lifetime (τP) longer than 2 s and even 4 s have rarely been reported in polymer systems. Here, luminescent compounds with small phosphorescence rate on the order of approximately 10-1 s-1 are designed, ethylene-vinyl alcohol copolymer (EVOH) as polymer matrix and antioxidant 1010 to protect organic triplets are employed, and ultralong phosphorescence lifetime up to 4.6 s under ambient conditions by short-term and low-power excitation are achieved. The resultant materials exhibit high afterglow brightness, long afterglow duration, excellent processability into large area thin films, high transparency and thermal stability, which display promising anticounterfeiting and data encryption functions.

6.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918308

ABSTRACT

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Rheumatoid , Diterpenes , Drug Liberation , Indoles , Nanoparticles , Phenanthrenes , Polymers , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Arthritis, Rheumatoid/drug therapy , Nanoparticles/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , Rats , Diterpenes/administration & dosage , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Polymers/chemistry , Porosity , Male , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Glucosamine/chemistry , Glucosamine/administration & dosage , Rats, Sprague-Dawley , Drug Carriers/chemistry , Humans , Mice , Delayed-Action Preparations , Inflammation/drug therapy , Inflammation/prevention & control
7.
AJR Am J Roentgenol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140631

ABSTRACT

Background: Tumors' growth processes result in spatial heterogeneity, with the development of tumor subregions (i.e., habitats) having unique biologic characteristics. Objective: To develop and validate a habitat model combining tumor and peritumoral radiomics features on chest CT for predicting invasiveness of lung adenocarcinoma. Methods: This retrospective study included 1156 patients (mean age, 57.5 years; 464 male, 692 female) from three centers and a public dataset, who underwent chest CT before lung adenocarcinoma resection (variable date ranges across datasets). Patients from one center formed training (n=500) and validation (n=215) sets; patients from the other sources formed three external test sets (n=249, 113, 79). For each patient, a single nodule was manually segmented on chest CT. The nodule segmentation was combined with an automatically generated 4-mm peritumoral region into a whole-volume volume-of-interest (VOI). A Gaussian mixture model (GMM) identified voxel clusters with similar first-order energy across patients. GMM results were used to divide each patient's whole-volume VOI into multiple habitats, defined consistently across patients. Radiomic features were extracted from each habitat. After feature selection, a habitat model was developed for predicting invasiveness, using pathologic assessment as a reference. An integrated model was constructed, combining features extracted from habitats and whole-volume VOIs. Model performance was evaluated, including in subgroups based on nodule density (pure ground-glass, part-solid, solid). Results: Invasive cancer was diagnosed in 625/1156 patients. GMM identified four as the optimal number of voxel clusters and thus of per-patient tumor habitats. The habitat model had AUC of 0.932 in the validation set, and 0.881, 0.880, and 0.764 in the three external test sets. The integrated model had AUC of 0.947 in the validation set and 0.936, 0.908, and 0.800 in the three external test sets. In the three external test sets combined, across nodule densities, AUCs for the habitat model were 0.836-0.969 and for the integrated model were 0.846-0.917. Conclusions: Habitat imaging combining tumoral and peritumoral radiomic features could help predict lung adenocarcinoma invasiveness. Prediction is improved when combining information on tumor subregions and the tumor overall. Clinical Impact: The findings may aid personalized preoperative assessments to guide clinical decision-making in lung adenocarcinoma.

8.
Inorg Chem ; 63(1): 613-620, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38102774

ABSTRACT

The self-assembly of the lanthanide metal-organic frameworks presents a formidable challenge but profound significance. Compared with the metal-organic frameworks based on 4f-3d ions, the chemistry of 4f-3p metal-organic frameworks has not been fully explored so far. In this study, two lanthanide-aluminum-based clusters [Ln6Al(IN)10(µ3-OH)5(µ3-O)3(H2O)8]·xH2O (x = 2, Ln = Gd, abbreviated as Gd6Al; x = 2.5, Ln = Eu, abbreviated as Eu6Al; HIN = isonicotinic acid) have been meticulously designed and obtained by hydrothermal reaction at low pH. The crystallographic study revealed that both Gd6Al and Eu6Al clusters exhibit an unprecedented sandwiched metal-organic framework holding a highly ordered honeycomb network. To our knowledge, it is the first case of Ln-Al-based cluster-organic frameworks. Furthermore, magnetic investigation of Gd6Al manifests a decent magnetic entropy change of -ΔSmmax = 28.8 J kg-1 K-1 at 2 K for ΔH = 7.0 T. Significantly, the introduction of AlIII ions into the lanthanide metal-organic frameworks displays excellent solid-state luminescent capability with a lifetime of 371.6 µs and quantum yield of 6.64%. The construction and investigation of these two Ln-Al clusters represent great progress in the 4f-3p metal-organic framework.

9.
Environ Res ; 242: 117771, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38036210

ABSTRACT

Mineral processing wastewater contains a lot of organic matter and heavy metal ions, and poor self-degradation ability makes it a key treatment object in environmental treatment. Photocatalysis is a promising technology to efficiently mineralize refractory contaminants from wastewater. In this work, 3D flower-like S-scheme N-Bi2O2CO3/g-C3N4 heterostructures were successfully constructed by hydrothermal method with the auxiliary of ionic liquids. The photocatalytic experiments show that the catalytic activity of heterojunction photocatalysts was significantly higher than that of bare g-C3N4 and N-Bi2O2CO3 for the degradation of two pollutants. NBOC/CN-2 shows the highest photocatalytic performance, and the degradation efficiency of sodium isobutyl xanthate (SIBX) on NBOC/CN-2 is 1.85 and 3 times that of bare g-C3N4 and Bi2O2CO3, respectively. The degradation efficiency of m-Cresol on NBOC/CN-2 is 8.34 and 6.93 times that of bare g-C3N4 and N-Bi2O2CO3, respectively. This significantly enhanced photocatalytic activity is attributed to the formation of flower-like heterojunctions, which can greatly increase the specific surface area and facilitate the separation and migration of photogenerated carriers. Total organic carbon (TOC) experiment proves that the two pollutants are effectively mineralized under the action of the prepared photocatalyst. The degradation path of m-Cresol degradation products was inferred based on the ion fragments. The capture experiment and Nitro-blue tetrazolium (NBT)-•O2- measurement show that superoxide radical plays a major role in photocatalytic degradation. The outstanding stability of the prepared flower-like heterojunction samples was examined by cyclic experiments. The S-scheme charge transfer mechanism has been proposed to explain the boosted activity of the flower-like heterojunction photocatalyst. This work provides a new idea for the design of efficient and stable g-C3N4-based photocatalyst for the photocatalytic degradation of refractory wastewater.


Subject(s)
Environmental Pollutants , Ionic Liquids , Wastewater , Cresols
10.
Int J Clin Pharmacol Ther ; 62(5): 222-228, 2024 May.
Article in English | MEDLINE | ID: mdl-38431833

ABSTRACT

OBJECTIVE: Azvudine is an effective treatment for patients infected with common COVID-19. However, physicians have reported a series of adverse reactions, including multiple cases of liver injury, caused by azvudine in clinical practice. This study assessed the incidence, clinical features, and associated risk factors of liver injury induced by azvudine in real-world settings, offering guidance for safe clinical use. MATERIALS AND METHODS: This study utilized the Chinese Hospital Pharmacovigilance System (CHPS) to retrospectively analyze the treatment of COVID-19 patients with azvudine at Changsha Central Hospital from December 19, 2022, to June 6, 2023. A case-control study was conducted to analyze the occurrence of azvudine-induced liver injury in COVID-19 patients who triggered a CHPS alert compared to normal COVID-19 patients. RESULTS: Among the total of 2,141 COVID-19 patients, 31 (1.45%) developed azvudine-induced liver injury, which is classified as an occasional adverse reaction. Liver injury was observed in 93.55% of patients between days 4 and 12 of the azvudine treatment, with elevated transaminases as the primary clinical manifestation. Univariate and binary logistic regression analyses indicated that low albumin levels and co-administration of low-molecular-weight heparin were statistically significant risk factors (p < 0.05). CONCLUSION: This study represents the first investigation of azvudine-induced liver injury and high-risk patients using the CHPS. The findings provide valuable insights to promote the safety of anti-COVID-19 drugs, serving as an important reference for future drug safety measures.


Subject(s)
Azides , COVID-19 , Chemical and Drug Induced Liver Injury, Chronic , Deoxycytidine/analogs & derivatives , Humans , Heparin, Low-Molecular-Weight/adverse effects , Pharmacovigilance , Retrospective Studies , Case-Control Studies , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Prospective Studies , Risk Factors , Albumins
11.
BMC Nephrol ; 25(1): 243, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075445

ABSTRACT

BACKGROUND: The prevalence of pre-frailty is notably high among maintenance hemodialysis (MHD) patients. Pre-frailty, an early and reversible condition between non-frailty and frailty, can lead to adverse outcomes such as increased unplanned hospital admissions and a higher risk of other chronic diseases. Early identification and intervention of pre-frailty in MHD patients are crucial. This study aimed to establish a simple and effective model for screening and identifying MHD patients at high risk of pre-frailty by using 50 kHz-Whole Body Phase Angle (PhA) measured by bioelectrical impedance analysis (BIA), hand grip strength (HGS), the Five-Times-Sit-to-Stand Test (FTSST), and laboratory parameters, with a specific focus on gender differences. METHODS: This prospective cross-sectional study was conducted from September to December 2023 at the Wenjiang Hemodialysis Center in the Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China. A total of 244 MHD patients, including 130 males and 114 females, were enrolled, comprising 128 non-frail and 116 pre-frail individuals. Data were collected prospectively, including demographic information, physical measurements, and laboratory test results. All participants provided informed consent before enrollment. The FRAIL scale (FS) was used to assess pre-frailty in MHD patients. Grip strength was measured using an electronic grip strength tester, physical function was assessed using the Five-Times-Sit-to-Stand Test, and whole-body phase angle was measured using the InBody S10 device. RESULTS: A total of 244 MHD patients with a mean age of 53.75 ± 0.90 years were enrolled, including 130 males with a mean age of 54.12 ± 1.26 years and 114 females with a mean age of 53.32 ± 1.29 years. ROC curve analysis showed that in male patients, the AUC of PhA for predicting pre-frailty was 0.919, with a sensitivity of 94.5% and specificity of 91.3%, and a cutoff value of 6.05°; in female patients, the AUC of PhA was 0.870, with a sensitivity of 70.5% and specificity of 90.6%, and a cutoff value of 5.25°. The AUC of FTSST for screening pre-frailty in male patients was 0.827, with a sensitivity of 62.3% and specificity of 96.2%, and a cutoff value of 12.95 s; in female patients, the AUC of FTSST was 0.784, with a sensitivity of 67.3% and specificity of 84.0%, and a cutoff value of 12.95 s. Additionally, in male patients, the combination of PhA and FTSST resulted in an AUC of 0.930, with a sensitivity of 96.4% and specificity of 81.3%; in female patients, the AUC was 0.911, with a sensitivity of 78.7% and specificity of 92.5%. CONCLUSION: PhA measured by BIA, in combination with the Five-Times-Sit-to-Stand Test, serves as an effective screening tool and predictor of pre-frailty in MHD patients. The combination of PhA and FTSST shows enhanced diagnostic value in female patients, while PhA alone is sufficient for predicting pre-frailty in male patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100051111), registered on 2021-09-13.


Subject(s)
Electric Impedance , Frailty , Hand Strength , Renal Dialysis , Humans , Male , Female , Prospective Studies , Middle Aged , Cross-Sectional Studies , Frailty/diagnosis , Frailty/physiopathology , Aged
12.
Ecotoxicol Environ Saf ; 283: 116780, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126816

ABSTRACT

Artificial light at night (ALAN) is a common form of light pollution worldwide, and the intensity, timing, duration, and wavelength of light exposure can affect biological rhythms, which can lead to metabolic, reproductive, and immune dysfunctions and consequently, host-pathogen interactions. Insect vector-borne diseases are a global problem that needs to be addressed, and ALAN plays an important role in disease transmission by affecting the habits and physiological functions of vector organisms. In this work, we describe the mechanisms by which ALAN affects host physiology and biochemistry, host-parasite interactions, and vector-borne viruses and propose preventive measures for related infectious diseases to minimize the effects of artificial light on vector-borne diseases.

13.
Genomics ; 115(4): 110643, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217084

ABSTRACT

MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.


Subject(s)
Arabidopsis , Pogostemon , Pogostemon/genetics , Pogostemon/metabolism , Plant Proteins/genetics , Phylogeny , Arabidopsis/genetics , Transcription Factors/metabolism
14.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721924

ABSTRACT

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Sirtuin 1 , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Dialysis Solutions , Disease Models, Animal , Homeostasis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Transforming Growth Factor beta1/metabolism
15.
Int J Nurs Pract ; : e13277, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840131

ABSTRACT

PURPOSE: To evaluate the effect of nonpharmacological therapies on nutrition status, complications and quality of life in head and neck cancer patients and to provide a basis for clinical practice. METHODS: This systematic review was reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis statement. Ten databases were systematically searched for all available articles from construction to November 2023. Two researchers independently conducted literature screening, data extraction and quality evaluation. Cochrane Review Manager 5.3 was used for meta-analysis. RESULTS: Finally, 27 RCT studies including 2814 patients with head and neck cancer were included. Five categories of interventions were used: nutritional support, exercise, swallowing function training, psychological intervention and low-level laser therapy. Nonpharmacological interventions can improve body weight loss in patients with HNC at the end of treatment (MD: 1.66 kg; 95% CI: 0.80 to 2.51), and subgroup analysis showed that nutritional support, psychological intervention and low-level laser therapy were effective. Nonpharmacological interventions can also ameliorate decreases in BMI (MD: 0.71; 95% CI: 0.16 to 1.26) and reduce the incidence of malnutrition (RR: 0.76; 95% CI: 0.67 to 0.86), oral mucositis (RR: 0.54; 95% CI: 0.37 to 0.80) and gastrointestinal complications (RR: 0.61; 95% CI: 0.38 to 0.96) during radiotherapy; however, no significant differences were found in other complications and quality of life. CONCLUSION: Nonpharmacological interventions can improve the nutrition status of patients with head and neck cancer and reduce the incidence of severe oral mucositis and gastrointestinal complications during radiotherapy but have no significant impact on quality of life.

16.
Public Health Nurs ; 41(3): 476-486, 2024.
Article in English | MEDLINE | ID: mdl-38468509

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer mortality. HCC has high morbidity, high mortality, and low survival rates. Screening is one of the most significant methods of lowering incidence and death while also increasing survival. OBJECTIVES: The aim of this study was to identify the facilitators and barriers to participation in HCC screening among high-risk populations. METHODS: A comprehensive and systematic search was undertaken in PubMed, Web of Science, MEDLINE, EMBACE, EBSCOhost and the Cochrane Library. A combination of synonyms of the keywords including HCC, screening, factors and adherence were used for searching. Studies addressing the facilitators and barriers to HCC screening compliance in at-risk individuals were included. Data were synthesized using Review Manager version 5.4. A random/fixed effects model meta-analysis was performed to estimate the pooled data and expressed with odds ratio (OR) and 95% confidence interval (CI). RESULTS: A total of seven articles met the inclusion criteria. Qualitative (n = 1) and quantitative (n = 6) studies using various types of surgery were conducted. The most commonly mentioned barriers were insufficient knowledge and awareness of HCC screening, unawareness of the necessity for early detection of HCC and lack of physician recommendation. A meta-analysis of seven studies showed that individuals with a family history of HCC increased screening uptake by nearly three times (OR: 2.69, 95% CI: 1.93, 3.75). Other most frequently reported facilitators include age, education level, and perceived risk et al. CONCLUSIONS: Many barriers to HCC screening were found. Meanwhile, this review points out that improving the awareness of high-risk populations toward HCC screening is expected to enhance compliance, thereby promoting early diagnosis of liver cancer, reducing mortality, and alleviating the burden of HCC.


Subject(s)
Carcinoma, Hepatocellular , Early Detection of Cancer , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Patient Compliance/statistics & numerical data , Mass Screening/methods , Risk Factors
17.
Angew Chem Int Ed Engl ; : e202407305, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090857

ABSTRACT

Metal halide perovskite ferroelectrics combining spontaneous polarization and excellent semiconducting properties is an ideal platform for enabling self-driven X-ray detection, however, achievements to date have been only based on uniaxiality, which increases the complexity of device fabrication. Multi-axial ferroelectric materials have multiple equivalent polarization directions, making them potentially amenable to multi-axial self-driven X-ray detection, but the report on these types of materials is still a huge blank. Herein, a high-quality (BA)2(EA)2Pb3I10 (1) biaxial ferroelectric single crystal was successfully grown, which exhibited significant spontaneous polarization along the c-axis and b-axis. Under X-ray irradiation, bulk photovoltaic effect (BPVE) was exhibited along both the c-axis and b-axis, with open circuit voltages (Voc) of 0.23 V and 0.22 V, respectively. Then, the BPVE revealed along the inversion of polarized direction with the polarized electric fields. Intriguingly, due to the BPVE of 1, 1 achieved multi-axial self-driven X-ray detection for the first time (c-axis and b-axis) with relatively high sensitivities and ultralow detection limits (17.2 nGyair s-1 and 19.4 nGyair s-1, respectively). This work provides a reference for the subsequent use of multi-axial ferroelectricity for multi-axial self-driven optoelectronic detection.

18.
Angew Chem Int Ed Engl ; : e202411725, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045805

ABSTRACT

The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.

19.
J Am Chem Soc ; 145(34): 19086-19097, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37596995

ABSTRACT

Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.


Subject(s)
Antioxidants , Ischemic Stroke , Humans , Antioxidants/pharmacology , Catalysis , Oxides , Superoxide Dismutase
20.
Mol Pain ; 19: 17448069231152125, 2023.
Article in English | MEDLINE | ID: mdl-36604795

ABSTRACT

Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Male , Mice , Ganglia, Spinal/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Hyperalgesia/metabolism , Neuralgia/metabolism , Neurons, Afferent/metabolism , Peripheral Nerve Injuries/metabolism , Proto-Oncogenes , Rats, Sprague-Dawley , Transcription Factors/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL