Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Nucleic Acids Res ; 50(2): 651-673, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34967410

ABSTRACT

Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.


Subject(s)
Nucleic Acid Conformation , RNA Cleavage , RNA/chemistry , Ribonucleases/chemistry , Amino Acid Sequence , Base Sequence , Biological Assay/methods , Catalysis , Kinetics , Models, Biological , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/isolation & purification , Peptides/chemical synthesis , Peptides/chemistry , Peptides/isolation & purification , Ribonucleases/metabolism , Structure-Activity Relationship
2.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791341

ABSTRACT

It is widely postulated that the majority of pathologically elevated extracellular or cell-free DNA (cfDNA) in cancer originates from tumor cells; however, evidence has emerged regarding the significant contributions of other cells from the tumor microenvironment. Here, the effect of cfDNA originating from murine B16 melanoma cells and L929 fibroblasts on B16 cells was investigated. It was found that cfDNAL929 increased the viability and migration properties of B16 cells in vitro and their invasiveness in vivo. In contrast, cfDNAB16 exhibited a negative effect on B16 cells, reducing their viability and migration in vitro, which in vivo led to decreased tumor size and metastasis number. It was shown that cell treatment with both cfDNAs resulted in an increase in the expression of genes encoding DNases and the oncogenes Braf, Kras, and Myc. cfDNAL929-treated cells were shown to experience oxidative stress. Gene expression changes in the case of cfDNAB16 treatment are well correlated with the observed decrease in proliferation and migration of B16 cells. The obtained data may indicate the possible involvement of fibroblast DNA in the tumor microenvironment in tumor progression and, potentially, in the formation of new tumor foci due to the transformation of normal cells.


Subject(s)
Cell Movement , Cell-Free Nucleic Acids , Fibroblasts , Melanoma, Experimental , Tumor Microenvironment , Animals , Mice , Fibroblasts/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/genetics , Tumor Microenvironment/genetics , Cell-Free Nucleic Acids/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , DNA, Neoplasm/metabolism , DNA, Neoplasm/genetics , Cell Survival/drug effects , Oxidative Stress
3.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999177

ABSTRACT

A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.


Subject(s)
Cell Proliferation , RNA, Double-Stranded , RNA, Double-Stranded/pharmacology , RNA, Double-Stranded/chemistry , Animals , Cell Proliferation/drug effects , Mice , Humans , Cell Line, Tumor , Interferon-alpha/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Interferons/metabolism
4.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398538

ABSTRACT

Cholesterol siRNA conjugates attract attention because they allow the delivery of siRNA into cells without the use of transfection agents. In this study, we compared the efficacy and duration of silencing induced by cholesterol conjugates of selectively and totally modified siRNAs and their heteroduplexes of the same sequence and explored the impact of linker length between the 3' end of the sense strand of siRNA and cholesterol on the silencing activity of "light" and "heavy" modified siRNAs. All 3'-cholesterol conjugates were equally active under transfection, but the conjugate with a C3 linker was less active than those with longer linkers (C8 and C15) in a carrier-free mode. At the same time, they were significantly inferior in activity to the 5'-cholesterol conjugate. Shortening the sense strand carrying cholesterol by two nucleotides from the 3'-end did not have a significant effect on the activity of the conjugate. Replacing the antisense strand or both strands with fully modified ones had a significant effect on silencing as well as improving the duration in transfection-mediated and carrier-free modes. A significant 78% suppression of MDR1 gene expression in KB-8-5 xenograft tumors developed in mice promises an advantage from the use of fully modified siRNA cholesterol conjugates in combination chemotherapy.


Subject(s)
Cholesterol , RNA, Double-Stranded , Humans , Animals , Mice , RNA, Small Interfering/metabolism , RNA Interference
5.
Biochemistry (Mosc) ; 88(7): 1008-1021, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37751870

ABSTRACT

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by uncontrollable diffusive growth, resistance to chemo- and radiotherapy, and a high recurrence rate leading to a low survival rate of patients with GBM. Due to a large number of signaling pathways regulating GBM pathogenesis, one of the promising directions is development of novel anti-glioblastoma compounds based on natural metabolites capable of affecting multiple targets. Here, we investigated the antitumor potential of the semisynthetic triterpenoid soloxolone tryptamide (STA) against human glioblastoma U87 cells. STA efficiently blocked the growth of U87 cells in 2D and 3D cultures, enhanced adhesiveness of tumor cells, and displayed synergistic cytotoxicity with temozolomide. In silico analysis suggested that the anti-glioblastoma activity of STA can be explained by its direct interaction with EGFR, ERBB2, and AKT1 which play an important role in the regulation of GBM malignancy. Along with direct effect on U87 cells, STA normalized tumor microenvironment in murine heterotopic U87 xenograft model by suppressing the development of immature blood vessels and elastin production in the tumor tissue. Taken together, our results clearly demonstrate that STA can be a novel promising antitumor candidate for GMB treatment.

6.
Biochemistry (Mosc) ; 88(7): 995-1007, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37751869

ABSTRACT

Currently, a significant increase in the levels of circulating cell-free DNA (cfDNA) in the blood of patients is considered as a generally recognized marker of the development of oncological diseases. Although the tumor-associated cfDNA has been well studied, its biological functions remain unclear. In this work, we investigated the effect of cfDNA isolated from the blood serum of the mice with B16-F10 metastatic melanoma on the properties of the B16-F10 melanoma cells in vitro. It was found that the profile of cfDNA isolated from the blood serum of mice with melanoma differs significantly from the cfDNA isolated from the blood serum of healthy mice, and is similar to the genomic DNA of B16 cells with regards to abundance of oncogenes and mobile genetic elements (MGE). It was shown that the cfDNA of mice with melanoma penetrated into B16 cells, resulting in the increase in abundance of oncogenes and MGE fragments, and caused 5-fold increase of the mRNA level of the secreted DNase Dnase1l3 and a slight increase of the mRNA level of the Jun, Fos, Ras, and Myc oncogenes. cfDNA of the healthy mice caused increase of the mRNA level of intracellular regulatory DNase EndoG and 4-fold increase of the mRNA level of Fos and Ras oncogenes, which are well-known triggers of a large number of signal cascades, from apoptosis inhibition to increased tumor cell proliferation. Thus, it is obvious that the circulating cfDNA of tumor origin is able to penetrate into the cells and, despite the fact that no changes were found in the level of viability and migration activity of the tumor cells, cfDNA, even with a single exposure, can cause changes at the cellular level that increase oncogenicity of the recipient cells.


Subject(s)
Cell-Free Nucleic Acids , Melanoma , Humans , Animals , Mice , Serum , Deoxyribonucleases , RNA, Messenger , Endodeoxyribonucleases
7.
Proc Natl Acad Sci U S A ; 117(51): 32370-32379, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288723

ABSTRACT

The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.


Subject(s)
Amides/chemistry , Antineoplastic Agents/pharmacology , MicroRNAs/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Phosphoric Acids/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Male , Melanoma/genetics , Melanoma/pathology , Mice, SCID , Molecular Targeted Therapy , Oligonucleotides, Antisense/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108446

ABSTRACT

Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems , Cell Communication , Exosomes/metabolism
9.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901742

ABSTRACT

Inflammatory bowel disease (IBD) is a complex and multifactorial systemic disorder of the gastrointestinal tract and is strongly associated with the development of colorectal cancer. Despite extensive studies of IBD pathogenesis, the molecular mechanism of colitis-driven tumorigenesis is not yet fully understood. In the current animal-based study, we report a comprehensive bioinformatics analysis of multiple transcriptomics datasets from the colon tissue of mice with acute colitis and colitis-associated cancer (CAC). We performed intersection of differentially expressed genes (DEGs), their functional annotation, reconstruction, and topology analysis of gene association networks, which, when combined with the text mining approach, revealed that a set of key overexpressed genes involved in the regulation of colitis (C3, Tyrobp, Mmp3, Mmp9, Timp1) and CAC (Timp1, Adam8, Mmp7, Mmp13) occupied hub positions within explored colitis- and CAC-related regulomes. Further validation of obtained data in murine models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS-stimulated CAC fully confirmed the association of revealed hub genes with inflammatory and malignant lesions of colon tissue and demonstrated that genes encoding matrix metalloproteinases (acute colitis: Mmp3, Mmp9; CAC: Mmp7, Mmp13) can be used as a novel prognostic signature for colorectal neoplasia in IBD. Finally, using publicly available transcriptomics data, translational bridge interconnecting of listed colitis/CAC-associated core genes with the pathogenesis of ulcerative colitis, Crohn's disease, and colorectal cancer in humans was identified. Taken together, a set of key genes playing a core function in colon inflammation and CAC was revealed, which can serve both as promising molecular markers and therapeutic targets to control IBD and IBD-associated colorectal neoplasia.


Subject(s)
Colitis , Colorectal Neoplasms , Inflammatory Bowel Diseases , Humans , Animals , Mice , Matrix Metalloproteinase 3 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 7 , Matrix Metalloproteinase 13 , Disease Models, Animal , Colon/pathology , Colitis/pathology , Colorectal Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Inflammatory Bowel Diseases/pathology , Azoxymethane/adverse effects , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Membrane Proteins
10.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003234

ABSTRACT

Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.


Subject(s)
Asthma , Pulmonary Fibrosis , Humans , Animals , Mice , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Airway Remodeling , Asthma/pathology , Lung/pathology , Fibrosis , Inflammation/pathology , Biomarkers
11.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139154

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.


Subject(s)
Lung Neoplasms , Triterpenes , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Signal Transduction , Neoplasm Recurrence, Local/pathology , Epithelial-Mesenchymal Transition , Inflammation/drug therapy , Inflammation/pathology , Pentacyclic Triterpenes/therapeutic use , Neoplastic Stem Cells/pathology , Tumor Microenvironment
12.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675165

ABSTRACT

Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.


Subject(s)
Acute Lung Injury , RNA, Small Interfering , Animals , Humans , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Phenotype , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
13.
Bioorg Med Chem ; 76: 117089, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36399911

ABSTRACT

Unsymmetric lipophilic polyamine derivatives are considered as potential antitumor agents. Here, a series of novel symmetric lipophilic polyamines (LPAs) based on norspermine and triethylenetetramine (TETA) backbones bearing alkyl substituents with different lengths (from decyl to octadecyl) at C(1) atom of glycerol were synthesized. Performed screening of the cytotoxicity of novel compounds on the panel of tumor cell lines (MCF-7, KB-3-1, B16) and non-malignant fibroblasts hFF3 in vitro revealed a correlation between the length of the aliphatic moieties in LPAs and their toxic effects - LPAs with the shortest decyl substituent were found to exhibit the highest cytotoxicity. Furthermore, norspermine-based LPAs displayed somewhat more pronounced cytotoxicity compared with their TETA-based counterparts. Further mechanistic studies demonstrated that hit LPAs containing the norspermine backbone and tetradecyl or decyl substituents efficiently induced apoptosis in KB-3-1 cells. Moreover, decyl-bearing LPA inhibited motility and enhanced adhesiveness of murine B16 melanoma cells in vitro, showing promising antimetastatic potential. Thus, developed novel symmetric norspermine-based LPAs can be considered as promising anticancer chemotherapeutic candidates.


Subject(s)
Polyamines , Animals , Mice , Polyamines/pharmacology
14.
Nucleic Acids Res ; 48(19): 10662-10679, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33010175

ABSTRACT

Potent knockdown of pathogenic RNA in vivo is an urgent health need unmet by both small-molecule and biologic drugs. 'Smart' supramolecular assembly of catalysts offers precise recognition and potent destruction of targeted RNA, hitherto not found in nature. Peptidyl-oligonucleotide ribonucleases are here chemically engineered to create and attack bulge-loop regions upon hybridization to target RNA. Catalytic peptide was incorporated either via a centrally modified nucleotide (Type 1) or through an abasic sugar residue (Type 2) within the RNA-recognition motif to reveal striking differences in biological performance and strict structural demands of ribonuclease activity. None of the Type 1 conjugates were catalytically active, whereas all Type 2 conjugates cleaved RNA target in a sequence-specific manner, with up to 90% cleavage from 5-nt bulge-loops (BC5-α and BC5L-ß anomers) through multiple cuts, including in folds nearby. Molecular dynamics simulations provided structural explanation of accessibility of the RNA cleavage sites to the peptide with adoption of an 'in-line' attack conformation for catalysis. Hybridization assays and enzymatic probing with RNases illuminated how RNA binding specificity and dissociation after cleavage can be balanced to permit turnover of the catalytic reaction. This is an essential requirement for inactivation of multiple copies of disease-associated RNA and therapeutic efficacy.


Subject(s)
Oligonucleotides/chemistry , Peptides/chemistry , RNA/chemistry , Ribonucleases/chemistry , Catalytic Domain , Gene Knockdown Techniques/methods , Molecular Dynamics Simulation , Peptides/metabolism , Ribonucleases/metabolism
15.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499287

ABSTRACT

Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.


Subject(s)
Pneumonia , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/metabolism , Prognosis , Lung/pathology , Pneumonia/metabolism , Fibrosis , Inflammation/pathology
16.
Int J Mol Sci ; 23(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35743015

ABSTRACT

The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)2Gly]2 (BC-miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC-miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC-miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine-A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC-miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC-miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.


Subject(s)
MicroRNAs , Carcinogenesis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleic Acid Conformation , Oligonucleotides/chemistry , Peptides/chemistry
17.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682893

ABSTRACT

It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and ßO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18ßH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and ß-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7-4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and ßO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and ßO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.


Subject(s)
Antineoplastic Agents , Glycyrrhetinic Acid , Neoplasms , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Epoxy Compounds/pharmacology , Ethylene Oxide , Glycyrrhetinic Acid/pharmacology , Mice , Stereoisomerism
18.
Small ; 17(45): e2102643, 2021 11.
Article in English | MEDLINE | ID: mdl-34605165

ABSTRACT

Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Cell Line, Tumor
19.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769514

ABSTRACT

Tumor-associated cell-free DNAs (cfDNA) play an important role in the promotion of metastases. Previous studies proved the high antimetastatic potential of bovine pancreatic DNase I and identified short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)and fragments of oncogenes in cfDNA as the main molecular targets of enzyme in the bloodstream. Here, recombinant human DNase I (commercial name Pulmozyme®), which is used for the treatment of cystic fibrosis in humans, was repurposed for the inhibition of lung metastases in the B16 melanoma model in mice. We found that Pulmozyme® strongly reduced migration and induced apoptosis of B16 cells in vitro and effectively inhibited metastases in lungs and liver in vivo. Pulmozyme® was shown to be two times more effective when administered intranasally (i.n.) than bovine DNase I, but intramuscular (i.m.) administration forced it to exhibit as high an antimetastatic activity as bovine DNase I. Both DNases administered to mice either i.m. or i.n. enhanced the DNase activity of blood serum to the level of healthy animals, significantly decreased cfDNA concentrations, efficiently degraded SINE and LINE repeats and c-Myc fragments in the bloodstream and induced apoptosis and disintegration of neutrophil extracellular traps in metastatic foci; as a result, this manifested as the inhibition of metastases spread. Thus, Pulmozyme®, which is already an approved drug, can be recommended for use in the treatment of lung metastases.


Subject(s)
Cell-Free Nucleic Acids/blood , Deoxyribonuclease I/metabolism , Long Interspersed Nucleotide Elements/genetics , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Short Interspersed Nucleotide Elements/genetics , Animals , Cell Line, Tumor , Deoxyribonuclease I/pharmacology , Disease Models, Animal , Drug Repositioning , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Proto-Oncogene Proteins c-myc/blood , Proto-Oncogene Proteins c-myc/genetics , Recombinant Proteins/pharmacology
20.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808835

ABSTRACT

RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleavage, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonucleotide recognition motifs (or their structural analogues) and catalytically active groups in a single molecular scaffold have been proven to be a great competitor to siRNA and ASO. Using the most efficient catalytic groups, utilising both metal ion-dependent (Cu(II)-2,9-dimethylphenanthroline) and metal ion-free (Tris(2-aminobenzimidazole)) on the one hand and PNA as an RNA recognising oligonucleotide on the other, allowed site-selective artificial RNases to be created with half-lives of 0.5-1 h. Artificial RNases based on the catalytic peptide [(ArgLeu)2Gly]2 were able to take progress a step further by demonstrating an ability to cleave miRNA-21 in tumour cells and provide a significant reduction of tumour growth in mice.


Subject(s)
Base Sequence , DNA, Catalytic/chemistry , Oligonucleotides/chemistry , RNA Cleavage , RNA/chemistry , Ribonucleases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL